摘要药物相互作用是指药物之间存在的抑制或促进等作用。针对目前药物关系抽取模型在长语句中抽取效果较差以及高层特征信息丢失的问题,该文提出了一种结合最短依存路径的胶囊网络关系抽取模型,该方法首先根据原语句解析出两个药物之间的最短依存路径,然后利用双向长短期记忆网络分别获取原语句和最短依存路径的低层语义表示,再将两者结合输入到胶囊网络中,利用胶囊网络的动态路由机制,动态地决定低层胶囊向高层胶囊传送的信息量,避免了高层特征信息丢失的问题,从而提升抽取效果。在DDIExtraction 2013药物相互作用关系抽取任务上的实验结果表明,该文方法的F1值优于目前最优方法1.17%。
PDF全文下载地址:
http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=2896
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于胶囊网络的药物相互作用关系抽取方法
本站小编 Free考研考试/2022-01-02
相关话题/药物 网络 信息 实验 胶囊
融入丰富信息的高性能神经实体链接
摘要歧义的存在使得实体链接任务需要大量信息的支撑。已有研究主要使用两类信息,即实体表述所在的文本信息和外部的知识库信息。但已有研究对信息的使用存在以下两个问题:首先,最新通用知识库规模更大、覆盖面更广,但目前的实体链接模型却未从中受益,其性能没有得到相应提升;其次,表述所在的文本信息既包含表述所处的 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于循环卷积神经网络的藏文句类识别
摘要句子是语言的最小使用单位,句类识别是为了进一步细化句法和句义研究。由于藏文句尾通常没有特殊的标点符号来识别不同句类,因此这一藏文语言特性就变成了一大难题。该文提出了基于语境和功能特征为一体的句子用途分类方案。首先,该文介绍了文法中藏文句子分类及其特征。其次,收集了大量藏文句子并对其进行了人工标注 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02融入分类词典的汉越混合网络神经机器翻译集外词处理方法
摘要在神经机器翻译中,因词表受限导致的集外词问题很大程度上影响了翻译系统的准确性。对于训练语料较少的资源稀缺型语言的神经机器翻译,这种问题表现得更为严重。近几年,受到外部知识融入的启发,该文在RNNSearch模型基础上,提出了一种融入分类词典的汉越混合网络神经机器翻译集外词处理方法。对于给定的源语 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于多通道双向长短期记忆网络的情感分析
摘要当前存在着大量的语言知识和情感资源,但在基于深度学习的情感分析研究中,这些特有的情感信息,没有在情感分析任务中得到充分利用。针对以上问题,该文提出了一种基于多通道双向长短期记忆网络的情感分析模型(multi-channelsbidirectionallongshorttermmemorynetw ...中科院软件研究所 本站小编 Free考研考试 2022-01-02神经网络机器翻译研究热点与前沿趋势分析
摘要机器翻译是指利用计算机将一种语言文本转换成具有相同语义的另一种语言文本的过程。它是人工智能领域的一项重要研究课题。近年来,随着深度学习研究和应用的快速发展,神经网络机器翻译成为机器翻译领域的重要发展方向。该文首先简要介绍近一年神经网络机器翻译在学术界和产业界的影响,然后对当前的神经网络机器翻译的 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于生成对抗模型的异质信息网络语义表征方法研究
摘要近些年,网络表示学习问题吸引了大量研究者的关注,而异构信息网络由于其丰富的结构语义信息及其广阔的应用领域,更是成为了网络表示学习领域的重中之重。目前面向异构信息网络的表示学习模型主要可以分为基于生成式模型的表示学习方法和基于判别式模型的表示学习方法,但是很少有工作同时结合两种模型进行表示学习的优 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于多源信息融合的分布式词表示学习
摘要分布式词表示学习旨在用神经网络框架训练得到低维、压缩、稠密的词语表示向量。然而,这类基于神经网络的词表示模型有以下不足:(1)罕见词由于缺乏充分上下文训练数据,训练所得的罕见词向量表示不能充分地反映其在语料中的语义信息;(2)中心词语的反义词出现于上下文时,会使意义完全相反的词却赋予更近的空间向 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于卷积循环神经网络的关系抽取
摘要关系抽取是信息抽取领域一项十分具有挑战性的任务,用于将非结构化文本转化为结构化数据。近年来,卷积神经网络和循环神经网络等深度学习模型,被广泛应用于关系抽取的任务中,且取得了不错的效果。卷积网络和循环网络在该任务上各有优势,且存在一定的差异性。其中,卷积网络擅长局部特征提取,循环网络能够捕获序列整 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于膨胀卷积神经网络模型的中文分词方法
摘要目前,许多深度神经网络模型以双向长短时记忆网络结构处理中文分词任务,存在输入特征不够丰富、语义理解不全、计算速度慢的问题。针对以上问题,该文提出一种基于膨胀卷积神经网络模型的中文分词方法。通过加入汉字字根信息并用卷积神经网络提取特征来丰富输入特征;使用膨胀卷积神经网络模型并加入残差结构进行训练, ...中科院软件研究所 本站小编 Free考研考试 2022-01-02一种面向生文本的事件同指消解神经网络方法
摘要事件同指消解在自然语言理解中是一项复杂的任务,它需要在理解文本信息的基础上,发现其中的同指事件。事件同指消解在信息抽取、问答系统、阅读理解等自然语言任务中均有重要作用。该文提出了一个事件同指消解框架,包括事件抽取(ENS_NN)、真实性识别(ENS_NN)和事件同指消解(AGCNN)三个部分。事 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02