删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

图像标题生成中的人物类名实体填充方法研究

本站小编 Free考研考试/2022-01-02

摘要得益于深度学习的发展和大规模图像标注数据集的出现,图像标题生成作为一种结合了计算机视觉和自然语言处理的综合任务得到了广泛关注。受到神经机器翻译任务的启发,前人将图像标题生成任务看作是一种特殊的翻译任务,即将一张图像视作源端的信息表述,通过编码解码过程,翻译为目标端的自然语言语句。因此,现有研究引入了端到端的神经网络模型,并取得了较好的生成效果。然而,图像标题生成研究依然面临许多挑战,其中最值得关注的难点之一是解决确切性文字表述的问题。一条确切的标题往往是有形且具体的表述,例如“梅西主罚点球”,而目前机器生成的标题则较为粗浅和单调,例如“一个人在踢球”。针对这一问题,该文尝试开展标题生成的有形化研究,并在前瞻性实验中聚焦于标题中人名实体的识别与填充。在技术层面,该文将机器自动生成的图像标题作为处理对象,去除其中抽象人名实体的名称(例如,一个人、男人和他等)或错误的称谓,并将由此形成的带有句法空缺的表述视作完型填空题目,从而引入了以Who问题为目标的阅读理解技术。具体地,该文利用R-NET阅读理解模型实现标题中人名实体的抽取与填充。此外,该文尝试基于图像所在文本的局部信息和外部链接的全局信息,对人名实体进行抽取。实验结果表明,该方法有效提高了图像标题的生成质量,BLEU值相应提升了2.93%;实验结果也显示,利用全局信息有利于发现和填充正确的人名实体。

PDF全文下载地址:

http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=2835
相关话题/图像 信息 实验 翻译 技术

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 融合社交网络用户自身属性的信息传播数学建模与舆情演化分析
    摘要针对传统的社交网络信息传播模型极少将用户属性和信息特征这两个因素纳入到信息传播模型研究中的不足,该文提出了一种基于用户自身属性的信息传播模型。首先该文抽取用户影响力、用户态度、用户年龄、信息能量、信息价值等特征并构建交互规则;其次,根据这些特征建立信息传播的数学模型,模拟社交网络舆情演化过程;最 ...
    本站小编 Free考研考试 2022-01-02
  • 基于文本和用户信息的在线评论质量检测
    摘要随着互联网的迅速发展,越来越多的用户评论出现在社交网站上。面对迅速增长的评论数据,如何为阅读评论的消费者提供准确、真实的高质量评论就显得尤为重要。评论质量检测旨在判断在线评论的质量,在传统的研究中,文本信息通常独立地被用于预测评论质量。但是在社交媒体上,每个文本之间不是独立的,而是可以通过发表文 ...
    本站小编 Free考研考试 2022-01-02
  • 融合源端句法和语义角色信息的AMR解析
    摘要序列到序列(seq2seq)的框架可以应用到抽象语义表示(AMR)解析任务中,把AMR解析当作一个从源端句子到目标端AMR图的翻译任务。然而,以前的工作通常把源端句子表示为一个单词序列,忽略了句子内部潜藏的句法和语义角色信息。基于seq2seq框架,该文提出了一个直接而有效的融合句法和语义角色信 ...
    本站小编 Free考研考试 2022-01-02
  • 基于密令位置信息特征的问题生成
    摘要问题生成是指在理解特定陈述句语义的前提下,自动地生成一条或多条关于该陈述句的问题。该文主要针对其中一项子任务开展研究,即一对一的问题生成(Point-wiseQuestionGeneration,PQG)。现有PQG研究,主要以端到端的序列化生成模型为框架,相应方法生成的问句,在流畅度方面已达到 ...
    本站小编 Free考研考试 2022-01-02
  • 深度学习建模下的自动句子填空技术
    摘要该文提出了一种结合依存句法分析和深度神经网络的自动句子填空技术。首先,提出了一种依存句法信息展开的序列建模方案,可以在引入句法信息的同时兼顾效率,并在此基础上利用排序学习思想,训练候选答案排序模型;其次,针对整体序列建模的细节建模失准问题,提出了一种基于语言模型多状态信息融合的自动句子填空模型; ...
    本站小编 Free考研考试 2022-01-02
  • 社交媒体话题检测与追踪技术研究综述
    摘要随着计算机的普及与互联网的高速发展,Facebook、Twitter、新浪微博等社交媒体逐渐成为人们信息交流的主要渠道。然而,由于社交媒体信息具有数量庞大、结构复杂、传播速度快等特点,人们无法从中快速准确地获取想要的信息。于是,话题检测与追踪技术应运而生,它将用户关注的信息从大量无序信息中筛选出 ...
    本站小编 Free考研考试 2022-01-02
  • 利用单语数据改进神经机器翻译压缩模型的翻译质量
    摘要该文提出利用一个大型且精度高的神经机器翻译模型(教师模型)从单语数据中提取隐性双语知识,从而改进小型且精度低的神经机器翻译模型(学生模型)的翻译质量。该文首先提出了“伪双语数据”的教学方法,利用教师模型翻译单语数据获得的合成双语数据改进学生模型,然后提出了“负对数似然—知识蒸馏联合优化”教学方法 ...
    本站小编 Free考研考试 2022-01-02
  • 融合单词翻译的神经机器翻译
    摘要神经机器翻译由于无法完全学习源端单词语义信息,往往造成翻译结果中存在着大量的单词翻译错误。该文提出了一种融入单词翻译用以增强源端信息的神经机器翻译方法。首先使用字典方法找到每个源端单词对应的目标端翻译,然后提出并比较两种不同的方式,用以融合源端单词及其翻译信息:①Factored编码器:单词及其 ...
    本站小编 Free考研考试 2022-01-02
  • 融合图片主题信息的图片描述翻译
    摘要图片描述翻译是给定图片及图片在某一语言的描述,利用翻译技术为图片生成目标语言描述的任务。观察发现,不同图片表达的场景往往不同,对应的图片描述具有明显的主题差异性。因此,利用主题信息能够提升翻译效果。然而,图片描述的内容通常较短,无法有效反映其主题。针对该问题,该文提出了一种融合图片主题信息的图片 ...
    本站小编 Free考研考试 2022-01-02
  • 基于领域特征的神经机器翻译领域适应方法
    摘要神经机器翻译在资源丰富领域上训练的翻译模型往往在其他资源稀缺领域中表现较差,领域适应是利用资源丰富的领域帮助资源稀少的领域提升翻译质量的一种方法。该文提出基于领域特征的领域适应方法以提升资源稀缺领域的神经机器翻译质量。具体而言,该文尝试构建领域敏感网络以获得领域特有特征,构建领域不敏感网络以获得 ...
    本站小编 Free考研考试 2022-01-02