摘要神经机器翻译在资源丰富领域上训练的翻译模型往往在其他资源稀缺领域中表现较差,领域适应是利用资源丰富的领域帮助资源稀少的领域提升翻译质量的一种方法。该文提出基于领域特征的领域适应方法以提升资源稀缺领域的神经机器翻译质量。具体而言,该文尝试构建领域敏感网络以获得领域特有特征,构建领域不敏感网络以获得领域间的共有特征。一个领域判别器被用于区分领域。该文通过训练领域敏感网络使得该领域判别器更易做出准确判断,同时引入对抗机制,使得领域不敏感网络欺骗该领域判别器。最后,提出一种系统集成机制,融合基准神经翻译网络、领域敏感网络、领域不敏感网络以完成神经机器翻译的领域适应。实验结果显示,该方法在中英广播对话领域上和英德口语领域上的翻译效果均有显著提升。
PDF全文下载地址:
http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=2798
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于领域特征的神经机器翻译领域适应方法
本站小编 Free考研考试/2022-01-02
相关话题/网络 翻译 神经 资源 质量
融合图片主题信息的图片描述翻译
摘要图片描述翻译是给定图片及图片在某一语言的描述,利用翻译技术为图片生成目标语言描述的任务。观察发现,不同图片表达的场景往往不同,对应的图片描述具有明显的主题差异性。因此,利用主题信息能够提升翻译效果。然而,图片描述的内容通常较短,无法有效反映其主题。针对该问题,该文提出了一种融合图片主题信息的图片 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于改进词向量GRU神经网络模型的藏语实体关系抽取
摘要互联网数据的爆炸式增长,使得研究热点更多转向Web内容结构化分析。如果将藏语知识以结构化形式表示,那么将会有利于藏语知识的结构化分析和深度挖掘。该文提出了一种优化词向量的GRU神经网络模型进行藏语实体关系抽取的方法。在模型的训练中,加入了优化的词向量,在传统的词向量模型中结合藏语音节向量、音节位 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于双层注意力循环神经网络的方面级情感分析
摘要在方面级情感分析中,常用的方法是将循环神经网络和注意力机制结合,利用注意力获取序列中不同单词的重要程度,但这并不能获取不同句子的重要程度,仅仅依赖单层注意力难于获取深层次情感特征信息。为了解决上述问题,该文提出一种基于双层注意力循环神经网络模型。通过双层注意力分别对单词层和句子层进行建模,捕获不 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02融合语言特征的卷积神经网络的反讽识别方法
摘要面对某些热点事件,微博评论者经常使用反讽来表达对于该事件的看法,以往的情感分析任务往往忽略这一语言现象。为了提高微博情感分析的准确率,该文对反讽识别开展了研究。通过分析中文文本的语言现象和社交网络的特性,归纳了中文微博反讽的语言特征,提出了一种融合语言特征的卷积神经网络(CNN)的反讽识别方法。 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于多任务双向长短时记忆网络的隐式句间关系分析
摘要隐式句间关系识别是篇章句间关系识别任务中一个重要的问题。由于隐式句间关系的语料没有较好的特征,目前该任务的识别仍不能达到很好的效果。隐式句间关系的语句和显式句间关系的语句在语义等方面有着一定的联系,为了充分利用这两个任务之间的联系,该论文使用多任务学习的方法,并使用双向长短时记忆(Bi-LSTM ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于门控记忆网络的汉语篇章主次关系识别方法
摘要篇章分析是自然语言理解的基础。作为篇章分析的重要任务之一,汉语主次关系识别还处于探索阶段。该文提出了一种基于门控记忆网络(GMN)的汉语篇章主次关系识别方法。该方法首先使用Bi-LSTM和CNN分别获取每个篇章单元的全局信息和局部信息。然后,融合两部分篇章单元信息并从中计算得到一个门控单元。最后 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02融入汉字字形特征的中英神经机器翻译模型
摘要神经机器翻译技术是目前机器翻译应用中取得效果最好的方法。将外部语言学知识如单词词性、依存句法标签引入神经机器翻译系统以提高翻译性能已经被很多****证明是一种行之有效的途径。相较于其他表音文字,汉字是一种形声字,其构造方法具有一半表音、一半表意的特殊结构,这种特殊的构造法使得汉字含有丰富的语义、 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向文本结构的混合分层注意力网络的话题归类
摘要针对目前话题归类模型中文本逻辑结构特征与文本组织结构特征利用不充分的问题,该文提出一种面向文本结构的混合分层注意力网络的话题归类模型(TSOHHAN)。文本结构包括逻辑结构和组织结构,文本的逻辑结构包括标题和正文等信息;文本的组织结构包括字—词语—句层次。TSOHHAN模型采用竞争机制融合标题和 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于双通道卷积神经网络的问句意图分类研究
摘要人机对话技术近年来受到学术界和工业界的广泛关注。人机对话系统的一个关键任务就是如何让聊天机器人理解用户的问句意图并将用户的输入正确地分类到相应领域中,其性能直接影响到特定领域的人机对话质量。该文针对对话问句具有句子长度短、局部特征明显等特点,单通道卷积神经网络(ConvolutionalNeur ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于转移神经网络的中文AMR解析
摘要抽象语义表示(abstractmeaningrepresentation,AMR)是一种领域无关的句子语义表示方法,它将一个句子的语义抽象为一个单根有向无环图,AMR解析旨在将句子解析为对应的AMR图。目前,中文AMR研究仍然处于起步阶段。该文结合中文AMR特性,采用基于转移神经网络的方法对中文 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02