1. 华中农业大学 农业部畜禽产品质量安全风险评估实验室 (武汉),湖北 武汉 430070;
2. 华中农业大学 国家兽药残留基准实验室 (HZAU) 农业部食品兽药残留检测重点实验室,湖北 武汉 430070
收稿日期:2020-03-20;接收日期:2020-07-28;网络出版时间:2020-08-13
基金项目:国家重点研发计划(No. 2018YFD0500300),国家自然科学基金(No. 31502115)资助
摘要:抗菌药在医疗和畜牧生产中的滥用导致了细菌抗药性的产生,这个公共卫生问题引起了人们越来越多的关注。除了基因突变和获得形成的抗药性(Resistance)外,细菌在自然环境中遇到的各种压力会引发其产生应激反应,这不仅可以保护细菌免受这些压力的影响,还会改变细菌对抗菌药的耐药性(Tolerance)。耐药性的产生必然会影响细菌的生理代谢,但是细菌可以通过调节自身代谢恢复对药物的敏感性。文中综述了近年来细菌应激反应和生理代谢与细菌耐药性之间的相关研究,以期采取更加有效的措施来控制细菌抗药性的发生和蔓延。
关键词:耐药性应激反应糖代谢氨基酸代谢
Bacterial stress response, physiological metabolism and antimicrobial tolerance and the control strategies
Lulu Huang1, Yufeng Gu1, Cuirong Wu1, Junhong Huang1, Guyue Cheng1,2
1. MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China;
2. National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, Hubei, China
Received: March 20, 2020; Accepted: July 28, 2020; Published: August 13, 2020
Supported by: National Key Research and Development Project of China (No. 2018YFD0500300), National Natural Science Foundation of China (No. 31502115)
Corresponding author: Guyue Cheng. Tel: +86-27-87287165-8404; E-mail: chengguyue@mail.hzau.edu.cn.
Abstract: Overuse of antibiotics in medical care and animal husbandry has led to the development of bacterial antimicrobial resistance, causing increasingly more health concern. In addition to genetic mutations and the formation of resistance, the various stresses bacteria encountered in the natural environment trigger their stress responses, which not only protect them from these stresses, but also change their tolerance to antimicrobials. The emergence of antimicrobial tolerance will inevitably affect the physiological metabolism of bacteria. However, bacteria can restore their sensitivity to drugs by regulating their own metabolism. This article reviews recent studies on the relationship between bacterial stress responses or the physiological metabolism and antimicrobial tolerance, intending to take more effective measures to control the occurrence and spread of antimicrobial resistance.
Keywords: antimicrobial tolerancestress responsesglucose metabolismamino acid metabolism
细菌抗药性是目前公认的一大公共卫生问题,抗药性的产生限制了临床治疗的用药选择,再加上新药研发的速度远远赶不上细菌抗药性发展的速度,这使得解决细菌感染这一问题越来越棘手。如果人类不积极采取措施,那么预计到2050年,因细菌抗药性而死亡的人数将达到1 000万[1]。因此,我们需要深入了解细菌产生抗药性的机制以及影响抗药性的因素,以便于更好地控制细菌抗药性的发展。
细菌的抗药性表型是细菌对抗菌药物的综合适应性反应,分为遗传因素造成的抗药性(Resistance),包括基因变异、基因重组以及基因转移元件(如质粒等)介导的基因获得;生理因素造成的耐药性(Tolerance),比如细胞膜通透性降低或者外排泵发生变化[2]。耐药性是细菌在不利的环境条件下所发生的适应性生理改变,可以通过合理使用抗菌药物从而消除或逆转耐药性,但抗药性是由于细菌的基因组序列发生变化,一旦出现便很难消除[2]。目前的大多数相关研究是基于基因层面,对耐药性的生理因素研究甚少,如细菌所处的环境与耐药性之间的相互作用。
细菌所处的外源环境压力如包膜间隙压力、营养缺乏、活性氧的产生等都会诱导细菌产生应激反应,通过激活细菌的适应性反应、药物作用靶点的修饰或生物被膜的形成改变细菌对药物的敏感性[3]。这种生理因素介导形成的耐药性会导致菌体全身性生理代谢及ATP供应的改变。同时,抗菌药作为外源压力的一种,也会引起细菌的保护性反应,从而产生耐药性。
糖类是微生物的主要碳源,氨基酸是许多生物大分子的基本组成单位。因此,细菌关键代谢途径(糖代谢、氨基酸代谢)的改变会通过三羧酸循环和电子传递链影响能量的生成和细胞的呼吸作用。一些与代谢相关的蛋白或是代谢途径中的产物可以逆转细菌的耐药性[4]。本文将总结上述外源压力、细菌糖代谢和氨基酸代谢对耐药性的影响。
1 细菌应激反应与耐药性1.1 包膜应激反应与耐药性温度、酸碱度和渗透压对耐药性的影响通常与细菌包膜间隙压力有关。许多抗菌药物的作用位点在细菌的细胞壁或细胞膜上,药物需要跨过膜结构这一屏障才能到达靶位,如果细胞内膜受到环境压力而发生变化,必然会影响细菌对药物的敏感性[5]。细菌通过自身的适应性反应来调控这种包膜间隙压力,主要涉及到双组分信号调节系统(Two-component regulatory systems,TCSs)、SOS应答系统(SOS response system)和Sigma (σ)因子[5]。
TCSs系统是由两种蛋白质(组氨酸激酶和应答调节蛋白)组成的一个双组分系统,在暴露于抗菌药物或者被环境信号(如营养缺乏、温度变化、氧化应激等)激活后,这两种蛋白质通过磷酸化介导的协同作用对下游基因进行调节。调节作用通常涉及细胞膜表面修饰、通透性改变、生物膜的形成,从而使细菌对药物的抗性增强[6] (表 1)。在大肠杆菌和肠球菌中,RcsCDB/F磷酸化系统对生物膜的形成和细菌致病性的调节有关键性作用,其被低温、高渗透压产生的压力激活后调节下游基因的表达,介导了细菌对β-内酰胺类药物和多粘菌素B的抗性[7-8]。此外,CpxAR系统调控细菌对酸碱度和高渗透压的反应,介导细菌对大环内酯类、氨基糖苷类、阳离子抗菌肽(CAMPs)、β-内酰胺类、磷霉素等的耐药性[9-13]。EnvZ/OmpR系统普遍存在于革兰氏阴性杆菌中,EnvZ通过感知渗透压的变化调节OmpR,随后影响膜孔蛋白OmpC和OmpF的表达水平。OmpC和OmpF表达量的下降使沙门氏菌和大肠杆菌对β-内酰胺类药物产生了耐药性[14-15]。
表 1 与应激反应诱导产生耐药性相关的TCS系统Table 1 TCS systems related to antimicrobial tolerance induced by stress responses
External pressures | TCSs | Activators | Bacterial species | Antimicrobial tolerance | References |
Envelope stress | RcsBCD/F | Low temperature, high osmotic pressure | Escherichia coli | β-Lactams | [7] |
Salmonella enterica serovar typhimurium | Polymyxin B | [8] | |||
CpxAR | High pH, high osmotic pressure | Haemophilus parasuis | Macrolide | [9] | |
E. coli | Aminoglycosides | [10] | |||
S. typhimurium | CAMPs | [11] | |||
E. coli | β-lactams | [12] | |||
Enterohemorrhagic E. coli | Fosfomycin | [13] | |||
EnvZ/OmpR | Osmotic pressure | S. typhimurium | β-lactams | [14] | |
E. coli | β-lactams | [15] | |||
Nutrient limitation | PhoPQ | Low Mg 2+ | Salmonella enterica | CAMPs | [5] |
Klebsiella pneumoniae | CAMPs | ||||
Pseudomonas aeruginosa | CAMPs | ||||
Oxidative stress | SoxRS | Redox-cycling agents | E. coli and S. enterica | Ampicillin, nalidixic acid, chloramphenicol, and tetracycline | [16] |
S. enterica | Quinolone | ||||
CroRS | H2O2 | Enterococcus faecalis | Cephalosporins | [17] |
表选项
处于恶劣环境下(如温度、酸碱度、渗透压的改变、氧化应激和营养缺乏)的细菌可以诱导DNA损伤从而形成单链DNA (Single-stranded DNA,ssDNA),后者激活了SOS应答系统来修复细菌产生的损伤,同时也增加了细菌的突变频率,诱导细菌产生抗药性表型[18]。SOS反应由lexA和recA基因调节,LexA二聚体阻遏RNA聚合酶与SOS应答相关基因的结合从而抑制基因的表达,当细胞内的ssDNA累积时,RecA与ssDNA结合形成复合物,LexA二聚体裂解,SOS基因可以正常表达。同时,recA基因的存在与一些细菌生物膜的形成有密切关系,如recA缺失突变的链球菌形成生物被膜的能力降低,单核细胞增生李斯特氏菌生物膜的形成也依赖于RecA介导的SOS反应因子YneA的激活[19]。细菌中的σ因子除了在基因表达中发挥作用以外,还可以调控细菌对环境压力的适应性反应[20] (表 2)。在革兰氏阴性菌(如沙门氏菌和大肠杆菌)中,调节包膜间隙压力反应的σ因子主要是σE。Xie等发现,鼠伤寒沙门氏菌rpoE(σE)的缺失突变体对β-内酰胺类、喹诺酮类和氨基糖苷类药物的耐药性增强[21]。σE在大肠杆菌对CAMPs类药物的抗性中也发挥着重要作用[5]。枯草芽孢杆菌在暴露于不利于自身生长的环境时,4种σ因子(σB、σM、σW和σX)参与应激反应的调节[5, 22]。σB不仅参与了金黄色葡萄球菌的多种生理过程(例如抵抗氧化应激、生物膜的形成、耐药性形成以及对环境压力的适应性反应),介导其对β-内酰胺类、CAMPs、糖肽类药物的耐药,也影响了单核细胞增生李斯特菌对药物的敏感性。有研究发现李斯特菌的σB突变体表现出对四环素、庆大霉素和β-内酰胺类药物的敏感性增强[5, 23-24]。
表 2 与细菌应激反应相关的σ因子Table 2 Sigma factors related to bacterial stress responses
Sigma factors | Activators | Bacterial species | Antimicrobial resistance | References |
σE | Heat, ethanol, misfolded membrane proteins, abnormal LPS | S. typhimurium | β-lactams, CAMPs, quinolones and aminoglycosides | [5, 21] |
E. coli | CAMPs | |||
σB | Stationary phase, high salt, heat, ethanol, low temperature, acid pH, nutrient starvation, energy stress, cell wall-active agents | Bacillus subtilis | Rifampicin | [5, 22-24] |
Staphylococcus aureus | β-lactams, CAMPs, glycopeptides | |||
Listeria monocytogenes | Tetracycline, gentamicin, β-lactams | |||
σM | Cell wall/envelope-active agents, toxic peptides, high salt, ethanol | B. subtilis | Moenomycin, ampicillin, bacitracin | [5] |
σW | Cell envelope-active agents, alkaline shock | B. subtilis | Fosfomycin, ampicillin, vancomycin | [5] |
σX | Cell wall-active agents, tunicamycin, high temperature | B. subtilis | Bacitracin, ampicillin, CAPs | [5] |
表选项
1.2 营养缺乏与耐药性生物被膜中营养物质和氧气耗尽或者处于休眠状态的细菌通常具有耐药性,这可能是由于细菌营养(例如氨基酸、铁、磷酸盐、碳源)的缺乏使细菌进入饥饿状态,细菌的生长速率和代谢活性显著降低,从而影响了细菌对药物的敏感性[5]。
细菌可以感知营养物的丰富度,进而通过饥饿反应对自身生长进行调节,从而提高其长时间存活的能力。Nguyen等的研究表明,干扰饥饿反应这一过程会使细菌对氨基糖苷类、β-内酰胺类、阳离子抗菌肽和氟喹诺酮类药物的敏感性提高[25]。细菌受到不同的饥饿信号(如氨基酸饥饿)刺激时可激活严谨反应,饥饿信号诱导relA和spoT基因的表达,增加了鸟苷四磷酸(ppGpp)的含量。在营养缺乏的条件下,ppGpp通过调节转录、翻译水平和细胞周期,改变细胞的新陈代谢和生理状态,从而增强细菌的耐药性[26]。Rodionov等发现,ppGpp的积累可以抑制肽聚糖的生物合成,使得大肠杆菌对青霉素的敏感性降低[27]。细菌中铁的营养限制也能够通过提高ppGpp的水平产生对美西林的抗性[5]。
当环境中的二价阳离子(如Mg2+)缺乏时,会引发细胞的一些反应从而影响多种细菌的耐药性。其中PhoPQ这一双组分信号系统发挥了重要作用。传感激酶PhoQ激活反应调节剂PhoP,随后调节下游靶基因pagB和pmrAB的表达。pagB编码棕榈酰转移酶,随后将酯链掺入脂质A,从而降低了外膜流动性,阻止CAMPs的进入;pmrAB编码的蛋白负责合成4-氨基阿拉伯糖并将其添加到脂质A中,使外膜表面的负电荷减少。由于正负电荷相互作用力的减弱,CAMPs类药物与细胞膜的结合力下降,导致多种细菌对CAPs类药物产生耐药性[5]。
1.3 氧化应激反应与耐药性活性氧系统(ROSs) (包括超氧化物、过氧化氢(H2O2)、羟基自由基)在细胞中积聚,能够破坏RNA、DNA、蛋白质和脂质等生命所需物质,从而引发适应性的氧化应激反应,以维持细菌存活率。
细胞中的抗氧化机制包括酶促和非酶促抗氧化系统。其中酶促抗氧化系统发挥着主要作用。相关的酶主要包括超氧化物歧化酶(分解超氧化物生成H2O2,随后被催化酶进一步降解)、谷胱甘肽过氧化物酶(降解H2O2和过氧化氢)。此外,一些其他的酶,如透明质酸酶、过氧化物酶以及小氧化还原蛋白(硫氧化还原蛋白),也被认为是抗氧化剂,可以抵消氧化应激造成的损伤[28]。细菌还可以产生修复氧化损伤的酶,包括参与脱氧核糖核酸修复的酶、蛋白水解酶以及脂肪分解酶。细菌产生的其他物质如多胺、内源性一氧化氮也可以保护细菌免受ROSs的破坏作用,从而保护细菌免受抗菌药的攻击[29-30]。
细菌中氧化应激反应相关基因的表达调节是复杂的,受转录调节子的控制。三个主要的转录调节子有OxyR、PerR (被H2O2激活)和OhrR (被过氧化物和次氯酸钠激活)[31]。除此之外,氧化应激反应调节剂还包括调节AcrAB-TolC多药外排泵的SoxRS系统、调节MexAB-OprM多药外排泵的MexR和调节外排的MgrA等[5, 31-32]。超氧化物可以激活SoxRS系统,后者介导micF和acrAB基因的表达量增加。MicF的表达量增加导致外膜孔蛋白OmpF减少,细胞通透性降低。而acrAB基因编码多药外排泵,两种作用方式共同参与SoxRS系统介导的大肠杆菌和沙门氏菌的耐药性[16]。MexR对MexAB-OprM外排泵操纵子起阻遏作用,铜绿假单胞菌感知过氧化物刺激后导致MexR与靶标MexAB-OprM启动子DNA的解离,外排泵相关基因的表达量增加,介导了细菌的耐药性[32]。MgrA调节易化子家族的norA、norB和tet38基因的表达。norA基因编码转运氟喹诺酮类药物的多药转运蛋白,norB编码与诺氟沙星和杀菌剂抗性相关的多药转运蛋白,tet38编码四环素转运蛋白[5]。金黄色葡萄球菌的MgrA突变体显示出对诺氟沙星、杀菌剂和四环素的耐药性升高[33]。另有研究表明,粪肠球菌暴露于H2O2会损伤细胞膜,随后CroRS双组分信号转导系统对细胞膜进行修复并且增强了其固有的头孢菌素耐药性[17]。
ROSs介导的细菌抗药性与药物浓度存在着一定的关系。细菌暴露于亚致死浓度的抗菌药后产生ROSs,随后通过上述作用机制或诱发基因突变(ROSs攻击DNA后产生的损伤通过诱导SOS反应产生易错修复,增加了细菌的突变速率),促进抗药性的产生。相反地,致死浓度的抗菌药作用后产生的ROSs可以促进细菌的杀灭以及减少耐药菌的产生[34-35]。
2 细菌的生理代谢与耐药性2.1 糖代谢与耐药性葡萄糖是大多数微生物主要的碳源,细菌通过糖酵解、三羧酸循环(TCA循环)、电子传递链等途径产生多种代谢产物和能量供细菌生长所需。越来越多的研究证明了细菌的糖代谢调节与抗菌药效应之间存在着密切的联系,糖代谢相关途径或者代谢中间产物都有可能影响细菌的耐药性(表 3)。Amato等发现,大肠杆菌以葡萄糖和延胡索酸为碳源,对氧氟沙星的耐受性增强。这可能是因为大肠杆菌优先利用葡萄糖作为碳源,待葡萄糖消耗完后,细菌生长速率出现一个下降的间隙,然后转向利用延胡索酸,生长速率缓慢回升。代谢途径的转变使细菌中ppGpp增加,毒素-抗毒素系统被激活,抑制了DNA的负超螺旋,从而抑制了氟喹诺酮类药物的作用靶点DNA的活性,产生耐药性[36]。另有研究表明,葡萄糖可以通过影响细胞的呼吸代谢、氨基酸代谢和不饱和脂肪酸的合成来干扰细菌正常的生理状态,而细菌对葡萄糖的摄取也增强了达托霉素的杀菌效力[37-40]。代谢途径的中间产物(如苹果酸、富马酸、乙醛酸等)也可以通过影响细菌的代谢通路从而影响细菌的致病力[41-43]。
表 3 糖代谢对耐药性的影响Table 3 Effects of glucose metabolism on antimicrobial tolerance
Bacterial species | Carbon source | Antimicrobials | Bacterial susceptibility to antimicrobials | Mechanisms | References |
E. coli | Glucose-fumaric acid | Fluoroquinolones | Decreased | Affected the DNA negative supercoil process | [36] |
S. aureus | Glucose | Methicillin | Increased | Disrupted metabolic pathways | [38] |
S. aureus | Glucose | Daptomycin | Increased | Related to glucose transport system | [40] |
Edwardsiella tarda | Glucose, fructose | Aminoglycosides (kanamycin) | Increased | Increased NADH and proton-driven PMF | [44-45] |
Vibrio alginolyticus | Glucose | Aminoglycosides (gentamicin) | Increased | Promoted the pyruvate cycle | [46] |
S. aureus and E. coli | Glucose and terminal electron acceptor | Quinolones | Increased | Promoted cellular metabolism | [39] |
Glucose, mannitol, fructose, pyruvate | Aminoglycosides | Increased | Increased NADH and proton-driven PMF | [47] | |
P. aeruginosa | Glyoxylate | Aminoglycosides (tobramycin) | Decreased | Inhibited tricarboxylic acid cycle and cellular respiration | [43] |
Mannitol, glucose | Aminoglycosides (tobramycin) | Increased | Induced metabolic pathways to produce PMF | [48] | |
Fumarate | Aminoglycosides (tobramycin) | Increased | Enhanced drug killing effect | [49] |
表选项
持留菌是细菌群体中处于休眠状态的一个亚群,它们通过减缓生长速率和降低代谢活性来抵抗致死浓度的抗菌药的威胁。持留菌在大肠杆菌、铜绿假单胞菌、结核分枝杆菌、鼠伤寒沙门氏菌和金黄色葡萄球菌等细菌种属中普遍存在[50]。它的存在增加了治疗细菌感染的难度。清除持留菌的办法之一是增强其代谢活性从而恢复其对药物的敏感性。多项研究表明,糖类(如葡萄糖、甘露醇等)能够增强氨基糖苷类药物对持留菌(大肠杆菌、金黄色葡萄球菌和铜绿假单胞菌)的杀灭作用[47-49]。这种作用机制是氨基糖苷类药物所特有的,可能是因为氨基糖苷类抗菌药可以杀死处于静止期的细菌[45]。这类抗菌药的摄取需要质子动力(Proton motive force,PMF)的参与,外源添加的糖类增强了PMF,细菌内的药物浓度也因此增加,从而达到杀灭细菌的效果[45]。
随着代谢组学技术的不断进步,一些研究表明,某些代谢物(如葡萄糖、果糖等)能够将抗性菌株的代谢组学特征恢复到敏感性菌株的代谢组学特征,从而恢复耐药菌的敏感性[44-46]。通过代谢组学的分析,发现耐药菌或多重耐药菌中代谢途径和代谢物的差异,外源添加这些被抑制的代谢物可以将代谢状态恢复到有利于细菌摄取抗菌药的状态[44-46]。
2.2 氨基酸代谢与耐药性除了糖类,氨基酸的生物合成和代谢也可能是逆转耐药性的一种策略(表 4)。研究表明,天冬氨酸可以增强耐药的嗜水假单胞菌对硫酸新霉素的敏感性[51]。除此之外,外源添加的丙氨酸、甘氨酸、丝氨酸、苏氨酸激活了TCA途径,增加TCA循环的代谢流,谷氨酸则通过P循环(草酰乙酸-丙酮酸-乙酰辅酶A-TCA循环)增加了NADH和PMF,从而恢复耐药菌对氨基糖苷类药物的敏感性[45, 52-53]。深入探究丙氨酸介导的杀菌机制后发现,丙氨酸通过核黄素代谢产生的FADH2的氧化促进了活性氧的产生,并通过抑制抗氧化剂来减少活性氧的降解,从而起到杀灭耐药菌的作用[54]。半胱氨酸和L-丝氨酸也可以诱导活性氧的产生,造成耐药菌的细胞损伤[55-56]。另有研究发现,甘氨酸、丝氨酸和苏氨酸的分解代谢途径的相关基因在具有血清抗性的大肠杆菌中表达下调,而外源性甘氨酸可以恢复细菌对血清的敏感性,增强了血清消除体内细菌病原体的能力[57]。
表 4 氨基酸代谢对耐药性的影响Table 4 Effects of Amino acid metabolism on antimicrobial tolerance
Bacterial species | Amino acid sources | Antimicrobials | Bacterial susceptibility to antimicrobials | Mechanisms | References |
Streptococcus pneumoniae | Glutamine | β-lactams (penicillin) | Decreased | Not yet clarified | [58] |
Pseudomonas hydrophila | Aspartic acid | Aminoglycosides (neomycin sulfate) | Increased | Not yet clarified | [51] |
V. alginolyticus | Phenylalanine | Ceftazidime | Increased | Enhanced host immune response | [59] |
Mycobacterium tuberculosis | Cysteine | Antituberculosis drugs | Increased | Induced production of reactive oxygen species | [55] |
E. coli | L-serine | Fluoroquinolones (ofloxacin and moxifloxacin) | Increased | Entered TCA cycle after deamination and Increased production of endogenous reactive oxygen species | [56] |
Serine | Aminoglycosides | Decreased | Affected the amino acid synthesis pathway | [60] | |
S. aureus, E. coli and P. aeruginosa | Unbuffered L-arginine | Aminoglycosides | Increased | Enhanced drug action under alkaline conditions | [61] |
E. tarda | Alanine | Aminoglycosides | Increased | Activated TCA cycle | [45] |
Glycine, Serine, Threonine | Aminoglycosides | Increased | Activated TCA cycle | [53] | |
Glutamic acid | Aminoglycosides | Increased | Promoted the pyruvate cycle | [52] |
表选项
氨基酸的合成与代谢也有可能促进细菌对药物的耐受性。Khoury等发现,在补充谷氨酰胺以后,细菌在青霉素作用下的存活率提高,这说明,谷氨酰胺降低了细菌对青霉素的敏感程度[58]。Shan等认为,丝氨酸等氨基酸合成途径很有可能通过影响了中枢代谢流量和细胞的能量状态,从而影响大肠杆菌对庆大霉素的耐受性[60]。
另有研究表明,L-缬氨酸、L-亮氨酸和苯丙氨酸可以增强宿主的免疫反应,从而有助于宿主的存活[59, 62-63]。有趣的是,氨基酸的理化性质也有可能影响药物的作用。氨基糖苷类药物的作用特点之一是碱性条件下可以增强药物的作用效果,因此在非缓冲型碱性氨基酸L-精氨酸的作用下,金黄色葡萄球菌、大肠杆菌、铜绿假单胞菌对药物敏感性增强[61]。
3 与应激反应和生理代谢相关的耐药性控制策略3.1 靶向应激反应相关基因或基因编码的蛋白质细菌的应激反应有助于细菌抵抗不同的环境压力,使细菌能够存活下来从而发挥其致病性。通过靶向应激反应相关基因或基因编码的蛋白质是一种可行的控制耐药性的策略。Fang等发现,应激反应相关基因的缺失突变株与野生菌株相比,对不良环境的耐受性明显降低,细菌的侵袭力减弱,也延缓了细菌生物膜的生长[64]。如上所述,CpxAR系统通过感知压力调节下游基因表达,从而增强细菌对不良环境的耐受性。有研究表明,cpxR和cpxRA缺失突变的副猪嗜血杆菌都表现出对大环内酯类的耐药性降低,这可能是外排泵相关基因的下调表达导致的结果[9]。同样地,SOS反应在各种压力介导的耐药性形成中发挥作用,通过SOS反应抑制剂与抗生素的联合应用可以降低细菌的耐药突变率,减少耐药性的产生[65]。
3.2 外源补充特定的代谢物耐药性形成的过程中,细菌的代谢也在随之变化。因此,耐药菌和敏感菌的代谢组之间存在许多差异,通过现代的技术手段比较代谢中心途径的变化,找出最受抑制的关键代谢物。已有一些研究证明,这种代谢物可以将耐药代谢组重编为敏感代谢组,这可能会通过改变细菌对药物的摄取状态,从而影响细菌的耐药性、耐受性和持留性[44-48, 52-53]。
4 总结与展望细菌在面对环境中的各种外源压力时(如包膜压力、营养物质缺乏、ROSs的产生等),会通过适应性反应来应对环境的变化,以抵消外源压力所造成的损伤。这也是细菌能够在恶劣的生长环境中存活的重要原因。而细菌的适应性反应会影响其耐药性的发展。抗菌药的使用对于细菌来说同样也是一种压力,影响了细菌的代谢过程。杀菌型抗菌药物作用于靶标后,会破坏细胞的成分,从而诱导细菌的应激反应,导致细菌的代谢活性增强。而抑菌型抗菌药物主要是抑制蛋白质的生物合成,该过程会消耗大量ATP,因此会导致代谢活性降低。相反地,细菌的代谢状态也会影响细菌对药物的敏感性。例如,生物被膜内部的大多数细菌的代谢受到抑制,持留菌大多数处于休眠状态,这都导致了药物的治疗效果大大降低[4]。
随着代谢组学技术(如气相色谱-质谱联用、液相色谱-质谱联用和核磁共振等)的不断发展,可以通过分析耐药菌代谢物的特征谱来更好地分析耐药性的作用机制[66]。很多这方面的研究与氨基糖苷类药物相关,这与药物的吸收和作用特点有密切的关系[44-48, 52-53]。细菌摄取氨基糖苷类药物需要PMF的参与,而代谢物(如葡萄糖、果糖、丙氨酸、甘氨酸、丝氨酸等)可以通过增加代谢流来产生更多的PMF和NADH,从而使细菌恢复对药物的敏感性[44-48, 52-53]。已有研究证明,革兰氏阴性杆菌(大肠杆菌、铜绿假单胞菌)、革兰氏阳性球菌(金黄色葡萄球菌)和水产动物源细菌(如迟缓爱德华氏菌、溶藻弧菌等)都可以通过重编代谢组来抵消细菌产生的耐药性[44-48, 52-53]。但目前对于这种方法是否普遍适用于其他需氧阴性菌,仍需探究。代谢中间产物除了通过上述作用机制影响药物作用以外,其他机制包括改变药物靶标活性、诱导细菌产生ROSs以及激活宿主的免疫反应等[36, 54-56, 59, 62-63]。总之,外源补充特定的代谢物作为抗菌药的辅剂可以通过调节细菌的代谢从而在一定程度上恢复或增强抗菌药物的功效。
生物体内代谢途径的变化也可能成为药物研发的新思路。癌细胞的代谢组会重新编码以利于癌细胞的生长与增殖,其中谷氨酰胺的分解代谢活性大大增强,这是由于谷氨酰胺分解代谢既提供了合成生物大分子所必需的前体物质,也参与了许多抑制细胞死亡的代谢过程和信号通路。癌细胞在体内会遇到各种各样的环境压力(比如营养限制或氧化应激)后会重新编排自身的代谢途径,例如谷氨酰胺的分解代谢的增强可以用来维持体内的活性氧平衡,从而促进细胞的生长和存活,因此能够抑制谷氨酰胺分解的药物可以用于治疗癌症[67]。深入探究细菌的代谢通路也有助于寻找新型抗菌药物的靶标。有研究表明,杀菌型抗菌药物可以通过产生ROSs、损伤DNA的方式杀伤细菌,而结核分枝杆菌中精氨酸合成途径与ROSs介导的氧化应激反应有关,是一个潜在的新型抗结核药物的靶标[68]。色氨酸合成途径对结核分枝杆菌的存活有着重要作用,而肠道菌群产生的代谢物吲哚丙酸作为色氨酸的结构类似物,通过变构抑制了合成途径中的关键酶,从而阻断了色氨酸的生物合成,发挥其抗菌活性[69]。总之,更好地认识细菌的代谢与耐药性之间的关系,既能为治疗反复感染提供新的方法,也可以拓宽药物研发的思路。
参考文献
[1] | Trotter AJ, Aydin A, Strinden MJ, et al. Recent and emerging technologies for the rapid diagnosis of infection and antimicrobial resistance. Curr Opin Microbiol, 2019, 51: 39-45. DOI:10.1016/j.mib.2019.03.001 |
[2] | Gao C, Hu M, Bai H, et al. Research on the resistance and tolerance mechanisms of Pseudomonas aeruginosa to ciprofloxacin. J Shandong Univ: Med Edi, 2011, 49(6): 38-45 (in Chinese). 高超, 胡明, 白华, 等. 铜绿假单胞菌对环丙沙星的抗药性和耐药性机制研究. 山东大学学报:医学版, 2011, 49(6): 38-45. |
[3] | Poole K. Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol, 2012, 20(5): 227-234. DOI:10.1016/j.tim.2012.02.004 |
[4] | Stokes JM, Lopatkin AJ, Lobritz MA, et al. Bacterial metabolism and antibiotic efficacy. Cell Metab, 2019, 30(2): 251-259. DOI:10.1016/j.cmet.2019.06.009 |
[5] | Poole K. Bacterial stress responses as determinants of antimicrobial resistance. J Antimicrob Chemother, 2012, 67(9): 2069-2089. DOI:10.1093/jac/dks196 |
[6] | Tierney ARP, Rather PN. Roles of two-component regulatory systems in antibiotic resistance. Future Microbiol, 2019, 14(6): 533-552. DOI:10.2217/fmb-2019-0002 |
[7] | Huang YH, Ferrières L, Clarke DJ. The role of the Rcs phosphorelay in Enterobacteriaceae. Res Microbiol, 2006, 157(3): 206-212. DOI:10.1016/j.resmic.2005.11.005 |
[8] | Detweiler CS, Monack DM, Brodsky IE, et al. virK, somA and rcsC are important for systemic Salmonella enterica serovar typhimurium infection and cationic peptide resistance. Mol Microbiol, 2003, 48(2): 385-400. |
[9] | Cao Q, Feng FF, Wang H, et al. Haemophilus parasuis CpxRA two-component system confers bacterial tolerance to environmental stresses and macrolide resistance. Microbiol Res, 2018, 206: 177-185. DOI:10.1016/j.micres.2017.10.010 |
[10] | Mahoney TF, Silhavy TJ. The Cpx stress response confers resistance to some, but not all, bactericidal antibiotics. J Bacteriol, 2013, 195(9): 1869-1874. DOI:10.1128/JB.02197-12 |
[11] | Weatherspoon-Griffin N, Zhao G, Kong W, et al. The CpxR/CpxA two-component system up-regulates two Tat-dependent peptidoglycan amidases to confer bacterial resistance to antimicrobial peptide. J Biol Chem, 2011, 286(7): 5529-5539. DOI:10.1074/jbc.M110.200352 |
[12] | Hirakawa H, Nishino K, Yamada J, et al. β-lactam resistance modulated by the overexpression of response regulators of two-component signal transduction systems in Escherichia coli. J Antimicrob Chemother, 2003, 52(4): 576-582. DOI:10.1093/jac/dkg406 |
[13] | Kurabayashi K, Hirakawa Y, Tanimoto K, et al. Role of the CpxAR two-component signal transduction system in control of fosfomycin resistance and carbon substrate uptake. J Bacteriol, 2014, 196(2): 248-256. DOI:10.1128/JB.01151-13 |
[14] | Sun S, Berg OG, Roth JR, et al. Contribution of gene amplification to evolution of increased antibiotic resistance in Salmonella typhimurium. Genetics, 2009, 182(4): 1183-1195. |
[15] | Jaffé A, Chabbert YA, Derlot E. Selection and characterization of β-lactam-resistant Escherichia coli K-12 mutants. Antimicrob Agents Chemother, 1983, 23(4): 622-625. DOI:10.1128/AAC.23.4.622 |
[16] | Koutsolioutsou A, Pe?a-Llopis S, Demple B. Constitutive soxR mutations contribute to multiple-antibiotic resistance in clinical Escherichia coli isolates. Antimicrob Agents Chemother, 2005, 49(7): 2746-2752. DOI:10.1128/AAC.49.7.2746-2752.2005 |
[17] | Djori? D, Kristich CJ. Oxidative stress enhances cephalosporin resistance of Enterococcus faecalis through activation of a two-component signaling system. Antimicrob Agents Chemother, 2015, 59(1): 159-169. DOI:10.1128/AAC.03984-14 |
[18] | Baharoglu Z, Mazel D. SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev, 2014, 38(6): 1126-1145. DOI:10.1111/1574-6976.12077 |
[19] | Van Der Veen S, Abee T. Bacterial SOS response: a food safety perspective. Curr Opin Biotechnol, 2011, 22(2): 136-142. DOI:10.1016/j.copbio.2010.11.012 |
[20] | Cavaliere P, Norel F. Recent advances in the characterization of Crl, the unconventional activator of the stress sigma factor σS/RpoS. Biomol Concepts, 2016, 7(3): 197-204. DOI:10.1515/bmc-2016-0006 |
[21] | Xie XF, Zhang HF, Zheng Y, et al. RpoE is a putative antibiotic resistance regulator of Salmonella enteric serovar typhi. Curr Microbiol, 2016, 72(4): 457-464. DOI:10.1007/s00284-015-0983-7 |
[22] | Bandow JE, Br?tz H, Hecker M. Bacillus subtilis tolerance of moderate concentrations of rifampin involves the σB-dependent general and multiple stress response. J Bacteriol, 2002, 184(2): 459-467. DOI:10.1128/JB.184.2.459-467.2002 |
[23] | Shaw LN, Lindholm C, Prajsnar TK, et al. Identification and characterization of σS, a novel component of the Staphylococcus aureus stress and virulence responses. PLoS ONE, 2008, 3(12): e3844. DOI:10.1371/journal.pone.0003844 |
[24] | Schulthess B, Meier S, Homerova D, et al. Functional characterization of the σB-dependent yabJ-spoVG operon in Staphylococcus aureus: role in methicillin and glycopeptide resistance. Antimicrob Agents Chemother, 2009, 53(5): 1832-1839. DOI:10.1128/AAC.01255-08 |
[25] | Nguyen D, Joshi-Datar A, Lepine F, et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science, 2011, 334(6058): 982-986. DOI:10.1126/science.1211037 |
[26] | Ronneau S, Hallez R. Make and break the alarmone: regulation of (p)ppGpp synthetase/hydrolase enzymes in bacteria. FEMS Microbiol Rev, 2019, 43(4): 389-400. DOI:10.1093/femsre/fuz009 |
[27] | Rodionov DG, Ishiguro EE. Direct correlation between overproduction of guanosine 3', 5'-bispyrophosphate (ppGpp) and penicillin tolerance in Escherichia coli. J Bacteriol, 1995, 177(15): 4224-4229. DOI:10.1128/JB.177.15.4224-4229.1995 |
[28] | Guan NZ, Li JH, Shin HD, et al. Microbial response to environmental stresses: from fundamental mechanisms to practical applications. Appl Microbiol Biotechnol, 2017, 101(10): 3991-4008. DOI:10.1007/s00253-017-8264-y |
[29] | van Acker H, Coenye T. The role of reactive oxygen species in antibiotic-mediated killing of bacteria. Trends Microbiol, 2017, 25(6): 456-466. DOI:10.1016/j.tim.2016.12.008 |
[30] | Gusarov I, Shatalin K, Starodubtseva M, et al. Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science, 2009, 325(5946): 1380-1384. DOI:10.1126/science.1175439 |
[31] | Kashef N, Hamblin MR. Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation?. Drug Resist Updat, 2017, 31: 31-42. DOI:10.1016/j.drup.2017.07.003 |
[32] | Chen H, Hu J, Chen PR, et al. The Pseudomonas aeruginosa multidrug efflux regulator MexR uses an oxidation-sensing mechanism. Proc Natl Acad Sci USA, 2008, 105(36): 13586-13591. DOI:10.1073/pnas.0803391105 |
[33] | Truong-Bolduc QC, Dunman PM, Strahilevitz J, et al. MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. J Bacteriol, 2005, 187(7): 2395-2405. DOI:10.1128/JB.187.7.2395-2405.2005 |
[34] | Li GQ, Quan F, Qu T, et al. Sublethal vancomycin-induced ROS mediating antibiotic resistance in Staphylococcus aureus. Biosci Rep, 2015, 35(6): e00279. DOI:10.1042/BSR20140167 |
[35] | Ma LN, Mi HF, Xue YX, et al. The mechanism of ROS in bacterial resistance and antibiotic sterilization. Heredity, 2016, 38(10): 902-909 (in Chinese). 马丽娜, 米宏霏, 薛云新, 等. ROS在细菌耐药及抗生素杀菌中的作用机制. 遗传, 2016, 38(10): 902-909. |
[36] | Amato SM, Orman MA, Brynildsen MP. Metabolic control of persister formation in Escherichia coli. Mol Cell, 2013, 50(4): 475-487. DOI:10.1016/j.molcel.2013.04.002 |
[37] | Zeng ZH, Du CC, Liu SR, et al. Glucose enhances tilapia against Edwardsiella tarda infection through metabolome reprogramming. Fish Shellfish Immunol, 2017, 61: 34-43. DOI:10.1016/j.fsi.2016.12.010 |
[38] | Rutowski J, Zhong FY, Xu MY, et al. Metabolic shift of Staphylococcus aureus under sublethal dose of methicillin in the presence of glucose. J Pharm Biomed Anal, 2019, 167: 140-148. DOI:10.1016/j.jpba.2019.02.010 |
[39] | Gutierrez A, Jain S, Bhargava P, et al. Understanding and sensitizing density-dependent persistence to quinolone antibiotics. Mol Cell, 2017, 68(6): 1147-1154. DOI:10.1016/j.molcel.2017.11.012 |
[40] | Prax M, Mechler L, Weidenmaier C, et al. Glucose augments killing efficiency of daptomycin challenged Staphylococcus aureus persisters. PLoS ONE, 2016, 11(3): e0150907. DOI:10.1371/journal.pone.0150907 |
[41] | Yang MJ, Cheng ZX, Jiang M, et al. Boosted TCA cycle enhances survival of zebrafish to Vibrio alginolyticus infection. Virulence, 2018, 9(1): 634-644. DOI:10.1080/21505594.2017.1423188 |
[42] | Kim JS, Cho DH, Heo P, et al. Fumarate-mediated persistence of Escherichia coli against antibiotics. Antimicrob Agents Chemother, 2016, 60(4): 2232-2240. DOI:10.1128/AAC.01794-15 |
[43] | Meylan S, Porter CBM, Yang JH, et al. Carbon sources tune antibiotic susceptibility in Pseudomonas aeruginosa via tricarboxylic acid cycle control. Cell Chem Biol, 2017, 24(2): 195-206. DOI:10.1016/j.chembiol.2016.12.015 |
[44] | Su YB, Peng B, Han Y, et al. Fructose restores susceptibility of multidrug-resistant Edwardsiella tarda to kanamycin. J Proteome Res, 2015, 14(3): 1612-1620. DOI:10.1021/pr501285f |
[45] | Peng B, Su YB, Li H, et al. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria. Cell Metab, 2015, 21(2): 249-262. |
[46] | Zhang S, Wang J, Jiang M, et al. Reduced redox-dependent mechanism and glucose-mediated reversal in gentamicin-resistant Vibrio alginolyticus. Environ Microbiol, 2019, 21(12): 4724-4739. DOI:10.1111/1462-2920.14811 |
[47] | Allison KR, Brynildsen MP, Collins JJ. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature, 2011, 473(7346): 216-220. DOI:10.1038/nature10069 |
[48] | Barraud N, Buson A, Jarolimek W, et al. Mannitol enhances antibiotic sensitivity of persister bacteria in Pseudomonas aeruginosa biofilms. PLoS ONE, 2013, 8(12): e84220. DOI:10.1371/journal.pone.0084220 |
[49] | Koeva M, Gutu AD, Hebert W, et al. An antipersister strategy for treatment of chronic Pseudomonas aeruginosa infections. Antimicrob Agents Chemother, 2017, 61(12): e00987-17. DOI:10.1128/AAC.00987-17 |
[50] | Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nat Rev Microbiol, 2017, 15(8): 453-464. DOI:10.1038/nrmicro.2017.42 |
[51] | Zhao XL, Chen H, Jin ZH, et al. GC-MS-based metabolomics analysis reveals L-aspartate enhances the antibiotic sensitivity of neomycin sulfate-resistant Aeromonas hydrophila. J Fish Dis, 2018, 41(12): 1831-1841. DOI:10.1111/jfd.12894 |
[52] | Su YB, Peng B, Li H, et al. Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria. Proc Natl Acad Sci USA, 2018, 115(7): E1578-E1587. DOI:10.1073/pnas.1714645115 |
[53] | Ye JZ, Lin XM, Cheng ZX, et al. Identification and efficacy of glycine, serine and threonine metabolism in potentiating kanamycin-mediated killing of Edwardsiella piscicida. J Proteomics, 2018, 183: 34-44. DOI:10.1016/j.jprot.2018.05.006 |
[54] | Ye JZ, Su YB, Lin XM, et al. Alanine enhances aminoglycosides-induced ROS production as revealed by proteomic analysis. Front Microbiol, 2018, 9: 29. DOI:10.3389/fmicb.2018.00029 |
[55] | Vilchèze C, Hartman T, Weinrick B, et al. Enhanced respiration prevents drug tolerance and drug resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci USA, 2017, 114(17): 4495-4500. DOI:10.1073/pnas.1704376114 |
[56] | Duan XK, Huang X, Wang XY, et al. L-serine potentiates fluoroquinolone activity against Escherichia coli by enhancing endogenous reactive oxygen species production. J Antimicrob Chemother, 2016, 71(8): 2192-2199. DOI:10.1093/jac/dkw114 |
[57] | Cheng ZX, Guo C, Chen ZG, et al. Glycine, serine and threonine metabolism confounds efficacy of complement-mediated killing. Nat Commun, 2019, 10: 3325. DOI:10.1038/s41467-019-11129-5 |
[58] | El Khoury JY, Boucher N, Bergeron MG, et al. Penicillin induces alterations in glutamine metabolism in Streptococcus pneumoniae. Sci Rep, 2017, 7: 14587. DOI:10.1038/s41598-017-15035-y |
[59] | Jiang M, Gong QY, Lai SS, et al. Phenylalanine enhances innate immune response to clear ceftazidime-resistant Vibrio alginolyticus in Danio rerio. Fish Shellfish Immunol, 2019, 84: 912-919. DOI:10.1016/j.fsi.2018.10.071 |
[60] | Shan Y, Lazinski D, Rowe S, et al. Genetic basis of persister tolerance to aminoglycosides in Escherichia coli. mBio, 2015, 6(2): e00078-15. DOI:10.1128/mBio.00078-15 |
[61] | Lebeaux D, Chauhan A, Létoffé S, et al. pH-mediated potentiation of aminoglycosides kills bacterial persisters and eradicates in vivo biofilms. J Infect Dis, 2014, 210(9): 1357-1366. DOI:10.1093/infdis/jiu286 |
[62] | Chen XH, Liu SR, Peng B, et al. Exogenous L-valine promotes phagocytosis to kill multidrug-resistant bacterial pathogens. Front Immunol, 2017, 8: 207. |
[63] | Du CC, Yang MJ, Li MY, et al. Metabolic mechanism for L-leucine-induced metabolome to eliminate Streptococcus iniae. J Proteome Res, 2017, 16(5): 1880-1889. DOI:10.1021/acs.jproteome.6b00944 |
[64] | Fang QJ, Han YX, Shi YJ, et al. Universal stress proteins contribute Edwardsiella piscicida adversity resistance and pathogenicity and promote blocking host immune response. Fish Shellfish Immunol, 2019, 95: 248-258. DOI:10.1016/j.fsi.2019.10.035 |
[65] | Mo CY, Manning SA, Roggiani M, et al. Systematically altering bacterial SOS activity under stress reveals therapeutic strategies for potentiating antibiotics. mSphere, 2016, 1(4): e00163-16. DOI:10.1128/mSphere.00163-16 |
[66] | Lin YX, Li WX, Sun LN, et al. Comparative metabolomics shows the metabolic profiles fluctuate in multi-drug resistant Escherichia coli strains. J Proteomics, 2019, 207: 103468. DOI:10.1016/j.jprot.2019.103468 |
[67] | Jin L, Alesi GN, Kang S. Glutaminolysis as a target for cancer therapy. Oncogene, 2016, 35(28): 3619-3625. DOI:10.1038/onc.2015.447 |
[68] | Tiwari S, Van Tonder AJ, Vilcheze C, et al. Arginine-deprivation-induced oxidative damage sterilizes Mycobacterium tuberculosis. Proc Natl Acad Sci USA, 2018, 115(39): 9779-9784. DOI:10.1073/pnas.1808874115 |
[69] | Negatu DA, Yamada Y, Xi Y, et al. Gut microbiota metabolite indole propionic acid targets tryptophan biosynthesis in Mycobacterium tuberculosis. mBio, 2019, 10(2): e02781-18. DOI:10.1128/mBio.02781-18 |