删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

利用回归模型筛选出近天然的抗原-抗体对接模拟结构

本站小编 Free考研考试/2021-12-26

陈郑珊, 迟象阳, 范鹏飞, 张冠英, 王美荣, 于长明, 陈薇
军事科学院军事医学研究院 生物工程研究所,北京 100071

收稿日期:2017-12-14;接收日期:2018-03-16; 网络出版时间:2018-04-08 基金项目:国家科技重大专项课题重大新药创制(No. 2018ZX09J18101)资助

摘要:在抗原-抗体分子对接模拟所生成的大量计算生成构象中筛选出近天然结构,即接近真实情况的抗原-抗体结合模式。借鉴QSAR原理,定义抗原-抗体接触面描述符并利用Discovery Studio 4.5软件平台计算出各对接模拟构象的接触面描述符和能量参数。构造训练集数据进行回归分析,建立预测对接模拟构象是否是近天然结构的数学模型。通过测试集和实际应用情况检验该数学模型。通过回归分析所建立的数学模型能够在成百上千的抗原-抗体对接模拟构象中有效筛选出其中的近天然结构,在测试集验证和4G7抗体结合模式预测应用中具有良好的表现,验证了该数学模型的有效性和实用性。经验性的抗原-抗体接触面特征如氢键密度、氨基酸对偏好性指数等以及能量参数能够共同有效表征近天然结构,所建立的数学模型有效增强了通过分子对接预测抗原-抗体结合模式的可行性。
关键词:分子对接 近天然结构筛选 抗原-抗体复合物模拟结构 表位-配位预测
Regression analysis to select native-like structures from decoys of antigen-antibody docking
Zhengshan Chen, Xiangyang Chi, Pengfei Fan, Guanying Zhang, Meirong Wang, Changming Yu, Wei Chen
Institute of Biotechnology, Academy of Military Medical Science, Chinese Academy of Military Sciences, Beijing 100071, China

Received: December 14, 2017; Accepted: March 16, 2018; Published: April 8, 2018
Supported by: National Science and Technology Major Project, the State Project For Essential Drug Research and Development (No. 2018ZX09J18101)
Corresponding author:Changming Yu. Tel: +86-10-66948692; E-mail: yuchangming@126.com
Wei Chen. Tel: +86-10-66948692; E-mail: cw0226@foxmail.com


Abstract: Given the increasing exploitation of antibodies in different contexts such as molecular diagnostics and therapeutics, it would be beneficial to unravel properties of antigen-antibody interaction with modeling of computational protein-protein docking, especially, in the absence of a cocrystal structure. However, obtaining a native-like antigen-antibody structure remains challenging due in part to failing to reliably discriminate accurate from inaccurate structures among tens of thousands of decoys after computational docking with existing scoring function. We hypothesized that some important physicochemical and energetic features could be used to describe antigen-antibody interfaces and identify native-like antigen-antibody structure. We prepared a dataset, a subset of Protein-Protein Docking Benchmark Version 4.0, comprising 37 nonredundant 3D structures of antigen-antibody complexes, and used it to train and test multivariate logistic regression equation which took several important physicochemical and energetic features of decoys as dependent variables. Our results indicate that the ability to identify native-like structures of our method is superior to ZRANK and ZDOCK score for the subset of antigen-antibody complexes. And then, we use our method in workflow of predicting epitope of anti-Ebola glycoprotein monoclonal antibody—4G7 and identify three accurate residues in its epitope.
Key words: proteins docking native-like structure discriminating decoy of antigen-antibody epitope-paratope prediction
随着计算机性能不断增强以及模拟计算方法不断成熟,出现了应用在生物领域的分子模拟方法,能够通过计算机模拟对生物大分子进行研究。在众多的模拟方法中,分子对接已成为其中最重要和应用最广泛的方法之一。分子对接主要是考察和预测两个分子在复合物中的结合模式,分子对接在抗原-抗体的研究中有着重要的应用。在抗体-抗原性质的研究中,表位信息是研究人员最为关心的方面之一,相对于主流的实验方法,分子对接模拟在抗原表位(尤其是空间构象性表位)的预测和辅助筛选方面具有特别的优势[1],分子对接结果能够提供对阐明抗体中和机制有价值的线索[2-3]。然而在对接产生的大量对接构象中,近天然结构占很小的比例,如何将这些结构筛选出来仍是一个具有挑战性的问题[4]。相关工作有所进展[5-6],但目前尚无一个普适性好、准确性高的打分函数可以实现这一筛选目的。本文将QSAR的原理应用于抗原抗体对接模拟构象的筛选(近天然结构预测)。即用数理统计方法抽提抗原-抗体复合物模拟构象的近天然程度与其抗原-抗体接触面的理化特性、能量特性之间的定量变化规则。通过对抗原-抗体接触面描述符和能量参数的回归分析,建立用于筛选近天然构象的数学模型。所得数学模型主要适用于抗原-抗体对接体系,在测试集验证和埃博拉病毒的包膜蛋白4G7抗体结合模式预测应用中具有较好的表现。
1 材料与方法1.1 抗原-抗体接触面描述符和能量参数候选的抗原抗体接触面描述符:①接触面面积;②接触面上氢键密度;③接触面上cation-π密度;④EPII[7] (Epitope-paratope interface index);⑤ZDock Score[8] (基于格点的几何互补性打分);⑥ZRank Score[9];⑦ZRank VdW;⑧ZRank Elec;⑨ZRank Solv。其中,ZRank Score是ZRank VdW (Van der Waals energies)、ZRank Elec (Electrostatics energies)和ZRank Solv (Desolvation energies)的线性组合。EPII是抗原-抗体接触面上氨基酸对偏好系数的线性组合:
Ni(x, y)表示氨基酸对(x, y)在接触面i上的数量,Fi(x, y)则表示表示氨基酸对(x, y)在接触面i上出现的频率(注:x表示抗原上的氨基酸,y表示抗体上的氨基酸)。Tharakaraman等[7]统计了84个抗原-抗体复合物结构接触面上的氨基酸对出现的频率,表示为20×20的矩阵RA,作为抗原-抗体接触面上氨基酸对偏好系数矩阵。接触面上残基类型的偏好性[10]可能与接触面上广泛存在的阳离子-π (Cation-π)相互作用有关[11],将接触面上cation-π密度列为候选的描述符。ZDock Score基于格点算法表征两个对接单体的形状互补性。ZRank Score表征范德华作用能、静电作用能和溶剂化作用能的综合影响。
接触面描述符及能量参数⑤⑥⑦⑧⑨由BIOVIA Discovery Studio 4.5软件平台的对接模拟程序(ZDOCK[8])计算得到;①②③④是自行使用Perl语言编写程序计算得到,BIOVIA Discovery Studio 4.5软件[12]的客户端所提供的应用程序编程接口(Discovery Studio scripting API),相当于Perl语言的扩展函数库,为编写程序操作生物分子模型及相关数据的处理提供了很大的便利。
1.2 模拟结构准确程度标准的定义将两个对接单体(即抗原和抗体)上距离另一个单体不超过4.5 Å的氨基酸定义为接触面氨基酸。将两个复合物结构中接触面上的相同氨基酸重叠后,计算接触面氨基酸上的重原子(非氢原子)的RMSD值,即I_RMSD[13]。I_RMSD描述了抗原-抗体接触面在原子水平上的准确度。如果某个模拟对接结构与相应实验测定的晶体结构(下载自PDB数据库http://www.rcsb.org/)的I_RMSD小于2.0 Å,则认为该模拟对接结构是近天然结构。
1.3 抗原-抗体分子对接在BIOVIA Discovery Studio 4.5生命科学分子模拟软件平台上使用ZDOCK[8]程序进行分子对接得到抗原-抗体反应的计算生成构象模型。对接过程主要使用抗体的可变区部分作为受体,使用抗原作为配体。ZDOCK计算过程中采用6°欧拉角度进行结合构型采样(构象空间搜索),最终样本包括54 000个结合构象模型。
1.4 准备训练集和测试集数据选用由Hwang等[14]提出的Protein-Protein Docking Benchmark Version 4.0中的抗原-抗体复合物结构作为筛选算法的研究对象。所选用的37个抗原-抗体复合物结构均收集自PDB (Protein data bank)[15],分辨率高于3.25 ?,氨基酸链长度不少于30个残基,抗体部分均包含轻链和重链可变区。在全部37个抗原-抗体复合物结构中再随机选取19个抗原-抗体复合物结构(表 1)用于数学模型的训练,其余18个抗原抗体复合物结构(表 2)作为测试对象。对于每一个的抗原-抗体复合物结构,其本身是实验测定结构,作为标准结构使用,拆分出其两个单体(即抗原和抗体)进行ZDOCK对接得到54 000个对接模拟构象(Decoy model),分别计算出每个对接模拟构象与标准结构间的I_RMSD值。从ZDock Score打分排序在前2 000名的对接模拟构象中选取I_RMSD值最小者(要求其I_RMSD值必须小于2.0 ?)作为近天然结构,如果该2 000个对接模拟构象的I_RMSD值均不小于2.0 ?,则以相同标准从全部54 000个对接模拟构象中选取I_RMSD值最小者。再对该2 000个对接模拟构象进行聚类分析,RMSD Cutoff参数设定为10.0,即同一个聚类簇(Cluster)中的不同构象模型间的RMSD值< 10 ?,而来自不同簇间的构象模型的RMSD值≥10 ?。聚类分析得到101个聚类簇,除去近天然结构所在的聚类簇后(如果近天然结构不属于任何一个聚类簇,则除去包含对接模拟构象最少的一个聚类簇),选取余下100个聚类簇的代表元作为不合理结构。即从对接结果中选出1个近天然结构(I_RMSD < 2.0 ?)和100个不合理结构,并构成一个具有101个构象元素的训练集体系或测试集体系。总共得到19个训练集体系和18个测试集体系。需要说明的是,其中有1个训练集体系由101个不合理构象组成(因为54 000个对接模拟构象中的I_RMSD值均不小于2.0 ?)。
表 1 训练集的19个抗原-抗体复合物Table 1 Training dataset of antigen-antibody complexes (total number of complexes=19)
Complex PDB ID 1 Protein 1 PDB ID 2 Protein 2
2VIS_AB: C 1GIG_LH Fab 2VIU_ACE Flu virus hemagglutinin
2VXT_HL: I 2VXU_HL Murine reference antibody 125-2H FAB 1J0S_A(6) Interleukin-18
2W9E_HL: A 2W9D_HL ICSM 18 FAB fragment 1QM1_A Prion protein fragment
3EOA_LH: I 3EO9_LH Efalizumab FAB fragment 3F74_A Integrin alpha-L I domain
3HMX_LH: AB 3HMW_LH Ustekinumab FAB 1F45_AB Interleukin-12
3MXW_LH: A 3MXV_LH Anti-Shh 5E1 chimera FAB fragment 3M1N_A Sonic Hedgehog N-terminal domain
3RVW_CD: A 3RVT_CD 4C1 FAB 3F5V_A DER P 1 allergen
4DN4_LH: M 4DN3_LH CNTO888 FAB 1DOL_A MCP-1
4FQI_HL: ABEFCD 4FQH_HL CR9114 FAB 2FK0_ABCDEF H5N1 influenza virus hemagglutinin
4G6J_HL: A 4G5Z_HL Canakinumab antibody fragment 4I1B_A Interleukin-1 beta
4G6M_HL: A 4G6K_HL Gevokizumab antibody fragment 4I1B_A Interleukin-1 beta
4GXU_MN: ABEFCD 4GXV_HL 1F1 antibody 1RUZ_HIJKLM 1918 H1 Hemagglutinin
1BGX_HL: T 1AY1_HL Fab 1TAQ_A Taq polymerase
2HMI_CD: AB 2HMI_CD Fab 28 1S6P_AB HIV1 reverse transcriptase
3EO1_AB: CF 3EO0_AB GC-1008 FAB fragment 1TGJ_AB Transforming growth factor-beta 3
3G6D_LH: A 3G6A_LH CNTO607 FAB 1IK0_A(10) Interleukin-13
3HI6_XY: B 3HI5_HL AL-57 FAB fragment 1MJN_A Integrin alpha-L I domain
3L5W_LH: I 3L7E_LH C836 FAB 1IK0_A(11) Interleukin-13
3V6Z_AB: F 3V6F_AB FAB E6 3KXS_F Capsid protein assembly domain

表选项


表 2 测试集的18个抗原-抗体复合物Table 2 Testing dataset of antigen-antibody complexes (total number of complexes=18)
Complex PDB ID 1 Protein 1 PDB ID 2 Protein 2
1AHW_AB:C 1FGN_LH Fab 5g9 1TFH_A Tissue factor
1BVK_DE:F 1BVL_BA Fv Hulys11 3LZT_ HEW lysozyme
1DQJ_AB:C 1DQQ_CD Fab Hyhel63 3LZT_ HEW lysozyme
1E6J_HL:P 1E6O_HL Fab 1A43_ HIV-1 capsid protein p24
1JPS_HL:T 1JPT_HL Fab D3H44 1TFH_B Tissue factor
1MLC_AB:E 1MLB_AB Fab44.1 3LZT_ HEW lysozyme
1VFB_AB:C 1VFA_AB Fv D1.3 8LYZ_ HEW lysozyme
1WEJ_HL:F 1QBL_HL Fab E8 1HRC_ Cytochrome C
1BJ1_HL:VW 1BJ1_HL Fab 2VPF_GH vEGF
1FSK_BC:A 1FSK_BC Fab 1BV1_ Birch pollen antigen Bet V1
1I9R_HL:ABC 1I9R_HL Fab 1ALY_ABC Cd40 ligand
1IQD_AB:C 1IQD_AB Fab 1D7P_M Factor Ⅷ domain C2
1K4C_AB:C 1K4C_AB Fab 1JVM_ABCD Potassium Channel Kcsa
1NCA_HL:N 1NCA_HL Fab 7NN9_ Flu virus neuraminidase N9
1NSN_HL:S 1NSN_HL Fab N10 1KDC_ Staphylococcal nuclease
1QFW_HL:AB 1QFW_HL Fv 1HRP_AB Human chorionic gonadotropin
2JEL_HL:P 2JEL_HL Fab Jel42 1POH_ HPr
2FD6_HL:U 2FAT_HL Plasminogen receptor antibody 1YWH_A Plasminogen activator receptor

表选项


通过BIOVIA Discovery Studio 4.5软件和自行设计编写的Perl语言程序的计算得出训练集体系和测试集体系中所有对接模拟构象的接触面描述符和能量参数。在各体系内对各项参数进行标准化(归一化)处理,作为数学模型的自变量。定义因变量Y,对于训练集体系中的每一个对接模拟构象,若该构象是近天然结构,则Y=1;若该构象是不合理结构,则Y=0。其中数据的批量处理和格式转换等操作也是由自行编写的Perl语言程序完成。
1.5 二值资料多重logistic回归分析准备好的训练集体系数据中含有一个定性变量:是否近天然结构(即Y,取值为0或1),以及9个定量变量:①接触面面积;②接触面上氢键密度;③接触面上cation-π密度;④EPII;⑤ZDock Score;⑥ZRank Score;⑦ZRank VdW;⑧ZRank Elec;⑨ZRank Solv。进行证实性研究,以是否近天然结构(Y)为因变量,以上述9个定量变量为自变量,拟合logistic回归模型并采用逐步法筛选变量。P(Y=1)P(This decoy is native-like)。自变量筛选以及logistic回归分析使用专业的统计软件SAS 9.2完成。
1.6 测试集对数学模型的验证将测试集体系内各个对接模拟构象的接触面描述符和能量参数代入回归方程中,计算出各个构象模型的P(This decoy is native-like)值,并在各个体系内按P(This decoy is native-like)由高到低的降序对构象模型进行排序。统计各个测试集体系排名在前5位的对接构象模型中是否存在近天然结构,如果存在,则认为所建立的数学模型适用于该体系,成功筛选出该体系中的近天然结构。采用仅由ZDock Score或ZRank Score打分排序的方法作为对照,采用相同的筛选成功与否的认定标准。该部分数据计算和统计等处理均由自行编写的Perl语言程序完成,BIOVIA Discovery Studio 4.5软件无相关功能。
1.7 预测埃博拉包膜蛋白与其中和抗体4G7的结合模式埃博拉病毒的包膜蛋白(Glycoprotein,GP)在病毒入侵过程中扮演着关键的角色,是疫苗和抗体研究的重要靶标。抗体组合ZMapp (2G4,4G7,13C6)[16]是治疗埃博拉病毒感染的鸡尾酒疗法之一,组成ZMapp的中和抗体就结合于GP上的表位。使用从PDB数据库中下载的GP晶体结构[17] (PDB ID: 3CSY)和4G7电镜结构[18] (PDB ID: 5KEN)在Discovery Studio 4.5软件中运用ZDOCK程序进行对接模拟。继而在生成的54 000个对接模拟构象中取出按ZDock Score排序在前5 000名的构象。计算出这5 000个构象的接触面描述符和能量参数并代入数学模型中得到P(This decoy is native-like),对P(This decoy is native-like)值最大的对接模拟构象使用基于机器学习的KFC2算法[19]预测抗原在接触面上的热点氨基酸(关键氨基酸)。将筛选出的对接模拟结构与抗原-抗体复合物的电镜结构(PDB ID: 5KEN)相对比;将预测的抗原上的关键氨基酸与文献报道的实验数据相对比。
2 结果与分析2.1 多重logistic回归分析得到数学模型利用统计软件SAS 9.2进行回归分析,得到的有统计学意义的模型自变量:①接触面面积(X1);②接触面上的氢键密度(X2);③ EPII (X3);④ZDock Score (X4),⑤ZRank Score (X5),对各参数进行检验的P值均小于0.05。由此建立回归方程:
对整个模型进行假设检验,原假设是所有的回归系数都为0,分别使用似然比、计分检验和Wald检验3种检验方法,3种方法的P值都小于0.05,可以认为该模型是成立的。ROC曲线的曲线下面积为0.994,预测概率和观察响应之间的关联性较强。
2.2 测试集对数学模型的验证效果经测试,在全部18个测试体系中,模型成功筛选出了其中的15个体系中的近天然结构。作为对照,在全部18个测试体系中,ZDock Score打分方法成功筛选出了其中的6个体系中的近天然结构,ZRank Score打分方法仅成功筛选出了其中5个体系中的近天然结构(表 3)。对于18个测试体系(共包含1 818个对接模拟构象),该数学模型筛选方法的有效性和成功率明显优于ZDock Score打分方法和ZRank Score打分方法。
表 3 测试集的预测结果Table 3 Prediction results of testing dataset (total number of complexes=19)
Complex MLR hits ZRANK
Score hits
ZDOCK
Score hits
1AHW_AB:C Yes Yes
1BVK_DE:F Yes
1DQJ_AB:C Yes Yes
1E6J_HL:P Yes Yes
1JPS_HL:T Yes
1MLC_AB:E Yes
1VFB_AB:C
1WEJ_HL:F
1BJ1_HL:VW Yes Yes Yes
1FSK_BC:A Yes Yes Yes
1I9R_HL:ABC Yes Yes
1IQD_AB:C Yes Yes
1K4C_AB:C Yes
1NCA_HL:N Yes Yes
1NSN_HL:S Yes
1QFW_HL:AB Yes
2JEL_HL:P Yes
2FD6_HL:U Yes
Total 15 5 6
LR: multivariate logistic regression model.

表选项


2.3 中和抗体4G7结合模式预测结果文献[20]报道抗体4G7结合在GP Base上,抗原-抗体复合物电镜结构和实验数据表明Cys511、Asp552和Cys556是抗原上与抗体结合密切相关的关键氨基酸。应用数学模型得到的排序第一的对接构象模型,其抗原部分的KFC2热点氨基酸(关键氨基酸)预测结果是GP上的Asn506、Lys510、Cys511、Pro513、Asn550、Gln551、Asp552Cys556,预测结果包含了全部3个文献报道的关键氨基酸(粗体)。运用抗原-抗体分子对接并通过回归分析建立的数学模型筛选出与电镜结构相接近的近天然结构,有效预测出了抗体4G7与相应抗原的大致结合模式和以实验方法确定的关键氨基酸(图 1)。
图 1 埃博拉包膜蛋白中和抗体4G7结合表位的预测结果 Figure 1 Result of predicting epitope of anti-Ebola glycoprotein MAb 4G7. (A) Binding hot spots predicted by KFC Server. Residues critical for MAb 4G7 binding are highlighted in yellow. (B–E) Superposition of docking model and cryo-electron microscopy structure (PDB accession No. 5KEN) on fixed Ebola virus glycoprotein. Docking model is shown with glycoprotein colored green and MAb 4G7 colored yellow in which the heavy chain CDR3 loop is colored in purple. Cryo-electron microscopy structure is shown with glycoprotein colored blue and MAb 4G7 colored brown in which the heavy chain CDR3 loop is colored in red.
图选项




3 讨论定量构效关系方法[21] (Quantitative structure activity relationship,QSAR)采用数理统计方法研究和揭示化合物活性与其分子结构或理化特性之间的定量变化规则,在小分子药物设计中有重要的应用。本文将QSAR的原理应用于抗原抗体对接模拟构象中近天然结构的筛选。即用数理统计方法抽提对接模拟构象的近天然程度与其抗原抗体接触面的理化特性、能量特性之间的定量变化规则。经回归分析,选定抗原-抗体接触面面积、接触面上氢键密度、EPII、ZDock Score和ZRank Score作为数学模型的自变量,建立多重logistic回归方程。作为自变量的各参数由BIOVIA Discovery Studio 4.5软件平台和自行编写的Perl语言程序计算得到,并需要进行标准化(归一化)处理。使用所建立的多重logistic回归方程指导从众多对接模拟构象中筛选出近天然结构取得较为理想的效果。在全部18个测试集体系中,该方法可将其中15个体系中的近天然结构排序在前5位,其中12个体系中的近天然结构排序在第1位,该方法对抗原-抗体近天然结构的筛选效果优于单纯使用ZRank Score或ZDock Score打分的排序筛选方法。基于该筛选方法在测试集验证中的良好表现,尝试将该方法应用于埃博拉病毒的包膜蛋白与其中和抗体4G7的结合模式预测。将GP晶体结构与抗体4G7的电镜结构进行ZDOCK对接,只有能够从生成的54 000个对接模拟构象中筛选出近天然结构,后续的热点氨基酸预测才能得到较为符合实际情况的结果。运用该数学模型计算后,取P(This decoy is native-like)值最大的对接模拟构象进行KFC2热点氨基酸预测,预测出8个热点氨基酸,包括了文献报道的全部3个抗原上的关键氨基酸。热点氨基酸预测结果说明该对接模拟构象中抗原-抗体的结合方式(尤其是接触面特征)是接近真实情况或具有部分真实情况特点的。对抗体4G7大致结合模式的成功预测也在一定程度上说明了本文所提出的抗原-抗体近天然结构筛选方法具有可行性与实用性。
现有生命科学分子模拟软件平台,如Discovery Studio、HADDOCK[22]、RosettaDock[23]、AutoDock[24]、ClusPro[25]、PatchDock[26]、HDOCK[27]等,提供了分子对接程序及相应打分函数。可以通过蛋白质分子对接的方法研究蛋白质结合模式,但是对接过程中的全构象搜索产生成千上万的对接模拟构象,通用的打分函数很难满足我们进一步准确筛选出近天然结构的需要。不同类型蛋白质的结合具有各自特点和规律,可以通过对已有同类型蛋白质复合物共晶体结构的分析和统计得到相应的经验规律,而借鉴QSAR原理,运用多重回归分析的数学模型是将这些经验规律与已有打分函数相结合的有效途径。本文探索了蛋白质结合表面统计性、经验性特征与ZDOCK、ZRank打分函数的联合使用方法,证明了回归分析建立的数学模型用以打分排序和筛选出近天然对接模拟构象的可行性,为提高使用分子对接研究蛋白质结合模式的效率和准确性,提供了可行的思路和方法。

参考文献
[1]Huang SY, Bolser D, Liu HY, et al. Molecular modeling of the heterodimer of human CFTR's nucleotide-binding domains using a protein-protein docking approach.J Mol Graph Modell, 2009, 27(7): 822–828.DOI: 10.1016/j.jmgm.2008.12.005
[2]Loyau J, Didelot G, Malinge P, et al. Robust antibody-antigen complexes prediction generated by combining sequence analyses, mutagenesis, in vitro evolution, X-ray crystallography and in silico docking.J Mol Biol, 2015, 427(16): 2647–2662.DOI: 10.1016/j.jmb.2015.05.016
[3]Li D, Xu J, Wang Z, et al. Epitope mapping reveals the binding mechanism of a functional antibody cross-reactive to both human and murine programmed death 1.MAbs, 2017, 9(4): 628–637.DOI: 10.1080/19420862.2017.1296612
[4]Lensink MF, Wodak SJ. Docking and scoring protein interactions: CAPRI 2009.Proteins, 2010, 78(15): 3073–3084.DOI: 10.1002/prot.v78:15
[5]Liang S, Meroueh SO, Wang G, et al. Consensus scoring for enriching near-native structures from protein-protein docking decoys.Proteins, 2009, 75(2): 397–403.DOI: 10.1002/prot.v75:2
[6]Shimba N, Kamiya N, Nakamura H. Model building of antibody-antigen complex structures using GBSA scores.J Chem Inf Model, 2016, 56(10): 2005–2012.DOI: 10.1021/acs.jcim.6b00066
[7]Tharakaraman K, Robinson LN, Hatas A, et al. Redesign of a cross-reactive antibody to dengue virus with broad-spectrum activity and increased in vivo potency.Proc Natl Acad Sci USA, 2013, 110(17): E1555–E1564.DOI: 10.1073/pnas.1303645110
[8]Chen R, Li L, Weng ZP. ZDOCK: an initial-stage protein-docking algorithm.Proteins, 2003, 52(1): 80–87.DOI: 10.1002/(ISSN)1097-0134
[9]Pierce B, Weng ZP. ZRANK: reranking protein docking predictions with an optimized energy function.Proteins, 2007, 67(4): 1078–1086.DOI: 10.1002/prot.21373
[10]Jones S, Thornton JM. Prediction of protein-protein interaction sites using patch analysis.J Mol Biol, 1997, 272(1): 133–143.DOI: 10.1006/jmbi.1997.1233
[11]Crowley PB, Golovin A. Cation-π interactions in protein- protein interfaces.Proteins, 2005, 59(2): 231–239.DOI: 10.1002/prot.20417
[12]Accelrys Software Inc. Discovery Studio Modelling Environment. 2012.
[13]Méndez R, Leplae R, de Maria L, et al. Assessment of blind predictions of protein-protein interactions: current status of docking methods.Proteins, 2003, 52(1): 51–67.DOI: 10.1002/prot.10393
[14]Hwang H, Vreven T, Janin J, et al. Protein-protein docking benchmark version 4.0.Proteins, 2010, 78(15): 3111–3114.DOI: 10.1002/prot.v78:15
[15]Rose PW, Prli? A, Altunkaya A, et al. The RCSB protein data bank: integrative view of protein, gene and 3D structural information.Nucleic Acids Res, 2017, 45(D1): D271–D281.
[16]Qiu XG, Audet J, Lv M, et al. Two-mAb cocktail protects macaques against the Makona variant of Ebola virus.Sci Trans Med, 2016, 8(329): 329ra333.
[17]Lee JE, Fusco ML, Hessell AJ, et al. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor.Nature, 2008, 454(7201): 177–182.DOI: 10.1038/nature07082
[18]Pallesen J, Murin CD, de val N, et al. Structures of Ebola virus GP and sGP in complex with therapeutic antibodies.Nat Microbiol, 2016, 1(9): 16128.DOI: 10.1038/nmicrobiol.2016.128
[19]Zhu XL, Mitchell JC. KFC2: a knowledge-based hot spot prediction method based on interface solvation, atomic density, and plasticity features.Proteins, 2011, 79(9): 2671–2683.DOI: 10.1002/prot.v79.9
[20]Davidson E, Bryan C, Fong RH, et al. Mechanism of binding to Ebola virus glycoprotein by the ZMapp, ZMAb, and MB-003 cocktail antibodies.J Virol, 2015, 89(21): 10982–10992.DOI: 10.1128/JVI.01490-15
[21]Cronin MTD, Basketter DA. Multivariate QSAR analysis of a skin sensitization database.SAR QSAR Environ Res, 1994, 2(3): 159–179.DOI: 10.1080/10629369408029901
[22]van Zundert GCP, Rodrigues J, Trellet M, et al. The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes.J Mol Biol, 2016, 428(4): 720–725.DOI: 10.1016/j.jmb.2015.09.014
[23]Chaudhury S, Berrondo M, Weitzner BD, et al. Benchmarking and analysis of protein docking performance in Rosetta v3.2.PLoS ONE, 2011, 6(8): e22477.DOI: 10.1371/journal.pone.0022477
[24]Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J Comput Chem, 2009, 30(16): 2785–2791.DOI: 10.1002/jcc.v30:16
[25]Kozakov D, Hall DR, Xia B, et al. The ClusPro web server for protein-protein docking.Nat Protoc, 2017, 12(2): 255–278.
[26]Schneidman-Duhovny D, Inbar Y, Nussinov R, et al. PatchDock and SymmDock: servers for rigid and symmetric docking.Nucleic Acids Res, 2005, 33(Web Server issue): W363–W367.
[27]Yan Y, Zhang D, Zhou P, et al. HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy.Nucleic Acids Res, 2017, 45(W1): W365–W373.DOI: 10.1093/nar/gkx407

相关话题/结构 测试 软件 程序 统计

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于定点突变的植物Ⅲ型聚酮合酶结构与功能研究进展
    李星1,2,陈默1,柴团耀1,王红11中国科学院大学,北京100049;2中国科学院遗传与发育生物学研究所,北京100101收稿日期:2017-07-21;接收日期:2017-09-12基金项目:国家自然科学基金(Nos.61672489,61379081)资助摘要:植物Ⅲ型聚酮合酶(Polyket ...
    本站小编 Free考研考试 2021-12-26
  • 复合菌系降解纤维素过程中微生物群落结构的变化
    艾士奇1,赵一全1,孙志远1,高亚梅1,晏磊1,唐鸿志2,王伟东11黑龙江八一农垦大学生命科学技术学院黑龙江省寒区环境微生物与农业废弃物资源化利用重点实验室黑龙江省秸秆资源化利用工程技术研究中心,黑龙江大庆163319;2上海交通大学生命科学技术学院微生物代谢国家重点实验室,上海200240收稿日期 ...
    本站小编 Free考研考试 2021-12-26
  • 微米阵列结构聚合物薄膜的制备及其对细胞三维培养的影响
    江卫民1,张伟康2,3,李东栋2,宋晔31南京大学医学院附属口腔医院南京市口腔医院,江苏南京210008;2中国科学院上海高等研究院,上海201210;3南京理工大学软化学与功能材料教育部重点实验室,江苏南京210094收稿日期:2018-04-17;接收日期:2018-06-20;网络出版时间:2 ...
    本站小编 Free考研考试 2021-12-26
  • 整合素BmIntegrin β2的结构分析及其对家蚕血细胞的调控作用
    赵二虎1,2,3*,张奎1,2,3*,苏晶晶1,4,潘光照1,2,3,李重阳1,2,3,申利1,2,3,杨丽群1,2,3,崔红娟1,2,31西南大学生物技术学院家蚕基因组生物学国家重点实验室,重庆400716;2重庆市蚕丝生物材料与再生医学工程技术研究中心,重庆400716;3西南大学肿瘤生物医学与 ...
    本站小编 Free考研考试 2021-12-26
  • 环二鸟苷单磷酸核糖开关的结构与功能
    李新风,陈芳,肖金凤,何进华中农业大学生命科学技术学院农业微生物学国家重点实验室,湖北武汉430070收稿日期:2017-03-04;接收日期:2017-05-03基金项目:国家自然科学基金(No.31270105),中央高校基本科研专项资金(No.2662015PY175)资助作者简介:何进??博 ...
    本站小编 Free考研考试 2021-12-26
  • 家蚕精氨酸激酶原核表达纯化、结构与活性分析
    何华伟1,王叶菁2,赵敏健2,位曙光1,赵朋1,蒋文超1,刘莉娜1,赵萍11西南大学家蚕基因组生物学国家重点实验室,重庆400715;2西南大学生物技术学院,重庆400715收稿日期:2017-01-05;接收日期:2017-04-27;网络出版时间:2017-05-17基金项目:国家自然科学基金( ...
    本站小编 Free考研考试 2021-12-26
  • 不同细胞系表达的抗EGFR单抗糖基化结构对比分析
    王冲1,郭怀祖21上海药品审评核查中心,上海201203;2抗体药物与靶向治疗国家重点实验室,上海201203收稿日期:2017-02-26;接收日期:2017-04-06;网络出版时间:2017-05-03基金项目:研发公共服务平台(No.16DZ2292900),产学研医(No.16DZ1910 ...
    本站小编 Free考研考试 2021-12-26
  • 绵羊体细胞核移植去核前程序的优化
    郭延华1,张译元1,王立民1,唐红1,李迎利2,周平11省部共建绵羊遗传改良与健康养殖国家重点实验室新疆农垦科学院畜牧兽医研究所,新疆石河子832000;2石河子市兽医卫生检疫所,新疆石河子832000收稿日期:2016-08-18;接收日期:2017-03-17;网络出版时间:2017-04-12 ...
    本站小编 Free考研考试 2021-12-26
  • 苦荞籽粒芦丁降解酶的纯化、酶学性质及部分一级结构分析
    张玉玮,李洁,袁勇,顾继娟,陈鹏西北农林科技大学生命科学学院,陕西杨凌712100收稿日期:2016-11-01;接收日期:2017-01-20;网络出版时间:2017-02-13基金项目:国家自然科学基金(Nos.30400282,31171606)资助摘要:芦丁降解酶催化芦丁降解为水溶性降低的槲 ...
    本站小编 Free考研考试 2021-12-26
  • 生物大分子自组装合成多维纳米生物结构与器件
    李峰1,门冬1,王殿冰2,张先恩21中国科学院武汉病毒研究所病毒学国家重点实验室,湖北武汉430071;2中国科学院生物物理研究所生物大分子国家重点实验室中国科学院生物大分子科教融合卓越中心,北京100101收稿日期:2016-12-5;接收日期:2017-02-15;网络出版时间:2017-01- ...
    本站小编 Free考研考试 2021-12-26