删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

[反]-β-法尼烯合成酶基因在植物抗蚜分子育种中的应用

本站小编 Free考研考试/2021-12-26

贾殿勇1*, 高世庆2*, 段鹏飞1, 陈吉宝1, 田风霞1, 喻修道1
1 南阳师范学院农业工程学院 河南省南水北调中线水源区水安全协同创新中心 河南省南水北调中线水源区生态安全重点实验室,河南 南阳 473061;
2 北京市农林科学院 北京杂交小麦工程技术研究中心,北京 100097

收稿日期:2017-03-08;接收日期:2017-04-25 基金项目:国家自然科学基金(Nos. 31601379, 31571641, 31501260),河南省教育厅项目(No. 14A210004)资助

摘要:蚜虫是重要的农业害虫,每年造成数以亿计的经济损失。[反]-β-法尼烯[(E)-β-farnesene,EβF]是绝大多数蚜虫报警信息素的主要成分,可使蚜虫产生骚动、从植株上脱落,并吸引蚜虫天敌,有效控制蚜虫危害。EβF合成酶是催化合成EβF的关键酶,目前该基因已从薄荷、香橙、花旗松、黄花蒿、洋甘菊等植物中得到分离鉴定。植物中表达EβF合成酶基因以催化法呢基焦磷酸(Farnesyl diphosphate,FPP)合成EβF是控制蚜虫危害的重要策略。文中概括了当前植物抗蚜转基因研究现状,综述了植物EβF合成酶基因及其在植物抗蚜分子育种中的应用。针对当前转基因植物的EβF生成量较低等问题,展望了EβF合成酶基因在植物抗蚜分子育种中的应用前景和研究策略。
关键词:蚜虫 蚜虫报警信息素 [反]-β-法尼烯 EβF合成酶基因 植物分子育种
Metabolic engineering of (E)-β-farnesene synthase genes for aphid-resistant genetically modified plants
Dianyong Jia1*, Shiqing Gao2*, Pengfei Duan1, Jibao Chen1, Fengxia Tian1, Xiudao Yu1
1 Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Henan Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project, School of Agricultural Engineering, Nanyang Normal University, Nanyang 473061, Henan, China;
2 Beijing Engineering Research Center of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

Received: March 8, 2017; Accepted: April 25, 2017
Supported by: National Natural Science Foundation of China (Nos. 31601379, 31571641, 31501260), Education Department of Henan Province (No. 14A210004)
Corresponding author:Xiudao Yu. Tel/Fax: +86-377-63525027; E-mail: yuxiudao@163.com


Abstract: Aphids are major agricultural pests that cause significant yield losses of crops each year. (E)-β-farnesene (EβF), as the main component of the aphid alarm pheromones, can interrupt aphid feeding and cause other conspecies in the vicinity to become agitated or disperse from their host plant. Furthermore, EβF can function as a kairomone in attracting aphid predators. EβF synthase genes, which encode enzymes that convert farnesyl diphosphate (FPP) to the acyclic sesquiterpene EβF, have been isolated and characterized from peppermint (Mentha × piperita and Mentha asiatica), Yuzu (Citrus junos), Douglas fir (Pseudotsuga menziesii), sweet wormwood (Artemisia annua) and chamomile (Matricaria recutita), respectively. Transgenic plant overexpressing EβF synthase genes has been one of the most efficient strategies for aphid management. In this review, the current statuses of transgenic plants engineered for aphid resistance were summarized. The plant-derived EβF synthase genes with their potential roles in aphid management via genetic-modified (GM) approaches were reviewed. The existing problem in GM plants with EβF synthase gene, such as low EβF emission was usually detected in the transgenic plant, was discussed and the development direction in this area was proposed.
Key words: aphid aphid alarm pheromone (E)-β-farnesene EβF synthase gene molecular plant breeding
蚜虫是危害农作物生产的重要害虫,蚜虫取食可使植株营养恶化,蚜虫分泌的蜜露附着在叶片表面影响植物的光合作用,并促进霉菌的滋生,诱发植物黑霉病害[1-2]。蚜虫还是植物病毒病的重要传播载体,蚜虫传播的病毒约占所有虫传病毒种类的45%[3-4]。近年来因全球气候变暖、耕作制度变化等因素影响,蚜虫繁殖能力和适应性显著增强,危害日趋严重[5-6]。据统计,2010–2011年间我国小麦、玉米、棉花、油菜、大豆等主要作物的蚜虫危害面积分别占当年种植面积的62.5%、14%、90%、32%和23%[7]。培育抗虫品种是防治蚜虫的最有效途径,现有农作物种质资源中缺乏有效的抗蚜基因,常规抗虫育种难以奏效[1, 4]。因此,利用转基因技术培育抗蚜新种质,对于保障我国粮食安全具有重要意义。
[反]-β-法尼烯[(E)-β-farnesene,EβF]是绝大多数蚜虫类型报警信息素的主要甚至唯一成分,可使蚜虫产生骚动而从植株上脱落,并吸引蚜虫天敌[8-10]。在植物中表达EβF合成酶基因以获得释放EβF的转基因植株已成为蚜虫防治的重要策略之一。本文概述了植物抗蚜转基因的研究现状,并对当前EβF合成酶基因在植物抗蚜转基因研究中的应用及存在问题进行了讨论。
1 植物抗蚜转基因研究现状作物抗虫转基因育种已持续开展20多年,多种表达苏云金芽孢杆菌(Bacillus thuringiensisBt)毒素蛋白的转基因作物,如棉花、玉米、大豆等已商业化种植[11]Bt毒素蛋白对鳞翅目和鞘翅目害虫有很强的毒杀作用,但对蚜虫等同翅目害虫防治效果不明显,制约了Bt基因在植物抗蚜分子育种中的应用。目前,用于抗蚜分子育种的基因和技术主要有植物凝集素基因、植物介导的RNA干扰技术等[1-2, 12]
1.1 植物凝集素植物凝集素是一类保守性糖结合蛋白,可与昆虫消化道上皮细胞的糖蛋白结合,降低膜透性,并可直接降低虫体消化酶活性,影响昆虫对营养物质的吸收和消化。此外,凝集素可在昆虫消化道内诱发病灶,促进消化道内的细菌繁殖,影响害虫生长发育[13]。自1988年发现蓖麻凝集素以来,人们己经从豆科、茄科、禾本科和石蒜科等众多植物中分离鉴定出上千种植物凝集素基因,已有10余种不同植物来源的凝集素基因用于转基因抗蚜研究[1, 13]。其中,雪花莲凝集素(Galanthus nivalis agglutinin,gna)、半夏凝集素(Pinellia ternate agglutinin,pta)等基因对哺乳动物的毒性较小,是抗虫转基因研究的热点。转gna基因的小麦、玉米、马铃薯、烟草等植物能抑制蚜虫生长、降低蚜虫生殖力[14-17]pta基因与gna的序列相似性很高,转pta基因小麦株系上蚜虫的存活率可降为对照的54%[18]。然而,植物凝集素抗虫具有广谱性,对蚜虫天敌、食草动物等可能具有毒害作用,如二星瓢虫取食转gna基因马铃薯上的蚜虫后,其产卵力、卵的生存力和寿命明显降低[19-20]。转凝集素基因植物对生态环境的影响引起了人们的担忧。
1.2 植物介导的RNA干扰RNA干扰(RNA interference,RNAi)是由双链RNA (Double-stranded RNA,dsRNA)介导的一种序列特异性转录后基因沉默机制。dsRNA进入生物体后被宿主细胞中的Dicer酶切割成21–23 nt的小干扰RNA (Small interfering RNA,siRNA);siRNA在RNA解旋酶的作用下解链成正义链和反义链,反义siRNA与体内一些酶(包括内切酶、外切酶、解旋酶等)结合形成RNA诱导的沉默复合物(RNA-induced silencing complex,RISC),随后RISC以序列互补的方式与靶标mRNA结合并使之降解[12, 21]。研究发现,在植物中表达dsRNA能抑制昆虫特定基因的表达,使昆虫生长发育受阻或致死,有效控制害虫[12, 21]。RNAi技术在蚜虫防治方面展示出很好的应用潜力[12],植物介导的RNAi技术已用于大麦、烟草和拟南芥等植物的抗蚜研究[4, 12, 22-24]。大麦中表达shp基因的dsRNA能显著降低麦长管蚜的繁殖力,且shp基因的沉默效应可以遗传至第7代子蚜[22]。烟草和拟南芥中表达桃蚜MpC002Rack-1MphbMySP基因的dsRNA,可显著降低蚜虫的繁殖率、减轻蚜虫危害[4, 23-24]。RNAi靶标基因的筛选是植物介导的RNAi抗蚜应用的前提,目前鉴定出的能显著致死或抑制蚜虫生长的靶标基因较少。其次,植物和蚜虫体内的核酸酶可降解外源dsRNA,降低蚜虫目标基因的沉默效率,影响了该技术在转基因植物抗蚜上的应用。同时,植物介导的RNAi存在潜在的安全风险,如RNAi的脱靶效应,亦有待深入研究和解决[12, 25]
此外,研究者尝试在植物中表达抗性基因、蛋白酶抑制剂等基因来控制蚜虫危害[26-29]。抗性基因(R基因)通常介导的是垂直抗性,表现出一定的物种特异性,如番茄R基因Mi-1.2转入茄子后,不能提高茄子对蚜虫的抗性[30]。蛋白酶抑制剂是抑制蛋白水解酶活性的一种小分子蛋白,昆虫摄食蛋白酶抑制剂后,其肠道内的蛋白水解受阻,进而扰乱昆虫的营养代谢[31]。然而,害虫可以通过合成同工酶或直接降解的方式,快速对外源蛋白酶抑制剂产生抗性[32-34];并且,植物中表达蛋白酶抑制剂对非靶标害虫如蜜蜂有害[35]。因此,挖掘新的更加安全有效的抗蚜基因尤为重要。
2 蚜虫报警信息素及EβF蚜虫报警信息素是蚜虫遇到天敌等威胁时从腹管分泌的一种粘稠液滴,释放到体外具有挥发性,能引起同类其他个体骚动并从栖息地迅速逃散或从植株上脱落,并能作为天敌捕食蚜虫的重要线索[8]。EβF是绝大多数蚜虫类型报警信息素的主要甚至唯一成分,包括桃蚜、玉米蚜、棉蚜、麦长管蚜、禾谷缢管蚜、麦无网长管蚜、大豆蚜等常见作物害虫[1, 7, 36]。EβF利于蚜虫防控的作用特点如下:1)蚜虫通过气味结合蛋白、昆虫化学感受蛋白等基因感应外界EβF[37-39],产生诸如骚动、停止取食,甚至从植物上脱落等警戒反应[7, 9, 36, 40]。2) EβF能够吸引多种蚜虫天敌,如瓢虫[10, 41-42]、食蚜蝇[42-44]、草蛉[45-47]、蚜茧蜂等[42, 47-48],作为天敌的捕食信号。3) EβF能显著提高产生有翅蚜的比率,使蚜虫主动离开寄主植物[49-50]。4) EβF能产生类似保幼激素Ⅲ的作用,影响蚜虫形态类型和生长发育。如一龄棉蚜受EβF诱导后,蚜虫的发育期延长、产卵力下降、体重减轻[51]。5) EβF与杀虫剂混用,可增加蚜虫的活动频率,提高杀虫效果[52-53]
然而,EβF在大田条件下不稳定,易氧化分解,制约了EβF在田间的抗蚜应用[54]。随后,为提高EβF的稳定性,研究者尝试了人工改造及化学合成EβF,并取得一定进展[55-56]。蚜虫报警信息素的专属性表明EβF与受体之间具有特定的作用部位,受体对信息素的结构和性质有严格的要求,导致化学合成的EβF对蚜虫防治效率较低。
3 植物体内EβF的代谢合成EβF作为一种无色无味的倍半萜类化合物,还是茼蒿、野生马铃薯、菊花、薄荷、黄花蒿、花旗松、香橙、洋甘菊等多种植物精油的主要组分[7, 57-58]。植物来源的EβF亦可趋避蚜虫和吸引天敌,如与栽培品种相比,野生马铃薯叶片挥发物中存在高量EβF,进而对蚜虫有很强的驱避作用[58];海灰翅夜蛾取食后,玉米会释放含有EβF的挥发物,减少蚜虫取食[59]。此外,菊花来源的EβF可以吸引天敌瓢虫和蚜茧蜂减轻蚜虫对白菜的危害[10];洋甘菊来源的EβF可有效降低马铃薯和小麦的田间蚜虫数量[42, 47]。EβF合成酶是催化生成EβF的关键酶,但蚜虫体内的EβF合成酶基因尚未分离鉴定[60]
目前,研究者已对植物体内的萜类化合物及EβF生物合成机制进行了较为深入的研究。萜类化合物是植物次生代谢产物中最大的一个家族,根据所含碳原子数目不同,可分为单萜(C10)、倍半萜(C15)和二萜(C20)等。植物萜类化合物通过两个独立途径合成,即位于质体中的2-C-甲基-D-赤藓糖醇-4-磷酸(2-C-Methyl-D-Erythritol-4-Phosphate,MEP)途径和位于细胞质中的甲羟戊酸(Mevalonate,MVA)途径(图 1)[61]。在植物质体中,1分子异戊烯焦磷酸(Isopentenyl diphosphate,IPP)和1分子二甲丙烯焦磷酸(Dimethylallyl diphosphate,DMAPP)在香叶基焦磷酸合成酶(Geranyl diphosphate synthase,GPS)的作用下,经头尾相连生成单萜合成的底物香叶基焦磷酸(Geranyl diphosphate,GPP);3分子IPP和1分子DMAPP在香叶基香叶基焦磷酸合成酶(Geranylgeranyl diphosphate synthase,GGPS)催化下形成二萜合成的底物香叶基香叶基焦磷酸(Geranylgeranyl diphosphate,GGPP)。在细胞质MVA途径中,2分子IPP和1分子DMAPP在法呢基焦磷酸合成酶(Farnesyl diphosphate synthase,FPS)催化下形成倍半萜化合物的底物法呢基焦磷酸(Farnesyl diphosphate,FPP) (图 1)。EβF合成酶基因已先后从欧洲薄荷[62]、亚洲薄荷[46]、香橙[63]、花旗松[64]、黄花蒿[65]和洋甘菊[66]等植物中得到分离鉴定。其中,欧洲薄荷与亚洲薄荷来源的EβF合成酶基因仅有5个核苷酸碱基的差异,编码的氨基酸序列完全一致[46]。植物EβF合成酶基因不含信号肽序列,主要位于细胞质中,催化MVA途径中的FPP生成EβF,以挥发物的形式释放到植物体外。
图 1 植物萜类化合物的代谢途径 Figure 1 Terpene biosynthesis pathway in plants. MVA: the mevalonate pathway; MEP: 2-C-methyl-D-erythritol 4-phosphate pathway; IPP: isopentenyl diphosphate; DMADP: dimethylallyl diphosphate; GPP: geranyl diphosphate; FPP: farnesyl diphosphate; GGDP: geranyl geranyl diphosphate. Former researches overexpressed exogenous EβF synthase gene in the cytosol of plants, but low EβF production was observed. One strategy indicated by the gray dotted box is redirecting sesquiterpene biosynthetic pathway into plastids, that is, simultaneously overexpressing the exogenous FPP synthase and EβF synthase in the plastid of plants.
图选项




欧洲薄荷、黄花蒿、香橙、洋甘菊及花旗松来源的EβF合成酶均含有Terpene_synth (PFAM accession number: PF01397)和Terpene_synth_C (PFAM accession number: PF03936)结构域,这两个结构域为植物萜类合成酶家族的典型特征(图 2)。将上述5种植物EβF合成酶与烟草表-马兜铃酸合成酶(5-epi-aristolochene synthase)的氨基酸序列进行比对(图 2),发现不同物种来源的EβF合成酶序列差异较大,仅存在部分保守的氨基酸残基,如薄荷EβF合成酶MpβFS “DDxxD” (301?305位)中的Asp301、Asp302和Asp305。“DDxxD”在植物萜类合成酶基因中普遍存在,参与催化反应中二价金属离子的螯合[67]。参照烟草表-马兜铃酸合成酶的晶体结构,保守氨基酸残基Arg264和Arg266位于A-C loop区,Asp528和Lys537则位于J-K loop区;A-C loop与J-K loop参与表-马兜铃酸合成酶与底物的结合[67]。植物萜类合成酶的活性中心一般位于羧基端(C端),研究表明活性中心的半胱氨酸、组氨酸及精氨酸残基是维持酶生物活性的关键[68-69]。序列比对发现,MpβFS有5个保守精氨酸(Arg112, 115, 264, 266, 441)及1个保守组氨酸残基(His82),其中Arg264, 266, 441位于C端的Terpene_synth_C结构域内(图 2)。
图 2 植物EβF合成酶基因的多序列比对 Figure 2 Multiple sequence alignment of the isolated plant-derived EβF synthases. 1–5: EβF synthase from M. piperita, A. annua, C. junos, M. recutita and P. menziesii, respectively; 6: 5-epi-aristolochene synthase from tobacco with known crystal structure. Amino acids identical in all six proteins are marked in black. Amino acids identical in five proteins are marked in gray. Terpene_synth domain is indicated by a dashed line and Terpene_synth_C is indicated by an open box. The highly conserved DDxxD region is marked with a bar, solid circles indicate highly conserved His, triangles indicate highly conserved Arg, and pentagrams indicate highly conserved amino acid residues in J-K loop.
图选项




4 EβF合成酶基因在植物抗蚜分子育种中的应用倍半萜类化合物是植物萜类化合物中最大的一类,约为单萜类化合物的7倍,常以挥发物的形式存在于植物中[70-71]。研究发现,倍半萜化合物参与植物对害虫的直接与间接防御反应。直接防御反应中,倍半萜化合物作为毒素及害虫取食或产卵的干扰素;间接防御反应中,植物受到害虫取食所释放的挥发性萜类可吸引天敌[72]。倍半萜合成酶基因在植物抗蚜分子育种中也展现出很好的应用前景,如玉米在受到海灰翅夜蛾取食后会高量表达TPS10基因,生成EβF、[反]-α-香柑油烯[(E)-α-bergamotene]等多种挥发物吸引害虫天敌;将玉米TPS10基因转入拟南芥,转基因株系可吸引鳞翅目害虫天敌寄生蜂[73]。作为TPS10在水稻中的同源基因,TPS46参与EβF和柠檬烯(Limonene)等挥发物的生成;水稻中过表达TPS46基因可增强转基因植株对禾谷缢管蚜的抗性[74]
体外表达试验表明,欧洲薄荷、花旗松、黄花蒿、洋甘菊等4种植物的EβF合成酶基因的产物均以EβF为主,纯度均达到95%以上(表 1)[62, 64-66]。在植物中过量表达外源EβF合成酶基因,借助细胞质中的FPP为底物,可以获得持续释放EβF的转基因植株(表 1)[1, 7, 45-46, 75-80]。如将欧洲薄荷EβF合成酶基因MpβFS转入拟南芥,转基因植株能够释放EβF,驱避蚜虫并吸引蚜虫寄生性天敌——蚜茧蜂[75]。笔者等分别将黄花蒿和亚洲薄荷来源的EβF合成酶基因(AaβFSMaβFS)转入烟草,转基因烟草可以通过吸引大草蛉减轻蚜虫危害,与对照植株相比,有两个株系上的蚜虫数量分别减少23.6%和29.5%[45-46]。此外,薄荷来源的EβF合成酶基因亦转入小麦、水稻、芥菜等植物来减轻蚜虫危害[76-79]。以上研究表明,EβF合成酶基因在作物转基因抗蚜虫应用上具有重要价值。蚜虫长时间处于高浓度EβF环境中,会对EβF产生适应性[81];蚜虫连续取食释放EβF的转基因拟南芥后,其第三代子蚜对EβF的警戒反应降低,但显著增强了瓢虫对适应性子蚜的捕食[82]
表 1 分离鉴定的EβF合成酶基因及转基因抗蚜研究Table 1 The isolated EβF synthase genes and their application on molecular plant breeding
Gene name Plant species GenBank Accession No. In vitro product purity (%) Transgenic plants
MpβFS Black peppermint
M. piperita
AF024615 98[62] Arabidopsis thaliana[75], rice[76] and wheat[77]
MaβFS1 Asian peppermint M. asiatica HQ337896 Tobacco[46], mustard[78] and wheat[79]
PmβFS Douglas fir P. menziesii AY906867 100[64] Tobacco[79]
CjβFS Yuzu C. junos AF374462 [63]
AaβFS Sweet wormwood A. annua AY835398 100[65] Tobacco[45, 80]
MrβFS Chamomile M. recutita KM586847 100[66]

表选项


5 存在问题及展望在植物倍半萜代谢改良过程中,目标倍半萜类化合物的生成量往往较低[1, 83],如烟草中表达紫穗槐-4, 11-二烯合成酶基因(Amorpha-4, 11-diene synthase),倍半萜化合物紫穗槐-4, 11-二烯(Amorpha-4, 11-diene)的生成量只有0.2–1.7 ng/(d?g)[84]。转薄荷MaβFS和黄花蒿AaβFS基因烟草植株的EβF释放量只有1.55–4.85 ng/(d?g)[45-46],而转MpβFS基因水稻的EβF释放量仅为4.89–5.03 ng/d(d?g)[76]。600 ng/μL以上浓度的EβF方可显著趋避蚜虫[9],EβF释放量偏低严重影响了转基因植株对蚜虫的最佳防治效果。植物细胞质中底物FPP供应量不足是制约倍半萜化合物代谢改良的关键[85-86]。FPP是植物倍半萜和甾醇的共同合成底物,甾醇为植物细胞膜的组成部分,对维持细胞结构具有重要作用。鉴于甾醇对植物细胞功能的重要性,FPP优先供应于甾醇的合成[85, 87]。同时,植物中FPP的供应量因物种差异而有所不同,相比青蒿、大冷杉等植物,小麦、水稻、烟草等植物内源倍半萜的量较低,可用于生成倍半萜的FPP较少[88]
相比倍半萜类化合物的分子代谢改良,转基因植物单萜的生成量很高,不受底物供应的影响,表明植物质体中拥有足够的前体IPP和DMAPP合成GPP (图 1)[83]。早期认为FPP合成酶仅存在于植物细胞质中,随着研究的深入,在拟南芥线粒体及水稻、小麦、烟草的叶绿体中均发现了FPP合成酶异构体[89-90]。据此,笔者等推测这些植物叶绿体中有可能合成FPP,随后利用叶绿体转导肽在烟草中表达黄花蒿EβF合成酶基因AaβFS1。转基因植株的EβF释放量达到4.33–19.25 ng/(d?g),与在烟草细胞质中表达AaβFS1基因的植株相比提高4?12倍[80]。尽管叶绿体拥有足够的前体IPP和DMAPP,但由于叶绿体中FPP合成酶异构体表达量或催化效率低,导致FPP合成量不足,转基因烟草在温室半自然条件下不能显著趋避蚜虫[80]
笔者在前期研究的基础上,提出通过以下两种策略提高转基因植株的EβF释放量:1)实施EβF代谢改良过程中的多基因协同转化,加强对FPP代谢流的调控。FPP合成酶是MVA途径中的关键酶,同时表达FPP合成酶可增加植物细胞质中FPP的供应量,提高转基因植物的EβF释放量。2)改变倍半萜代谢的细胞分区,即在质体中同时表达FPP合成酶和EβF合成酶基因,将合成EβF的代谢途径由细胞质转至质体(图 1)。利用质体中充足的IPP和DMAPP,催化形成足量的FPP,提高转基因植株的EβF释放量。Wu等[91]在烟草叶绿体中共表达FPP合成酶及紫穗槐-4, 11-二烯合成酶基因,使烟草倍半萜紫穗槐-4, 11-二烯的产量提高1 000多倍。同时,为增强EβF合成酶转基因植株的抗蚜效果,可实施EβF合成酶基因与其他抗蚜基因/技术的分子聚合育种。如在释放EβF的转基因植株中表达蚜虫气味结合蛋白基因的dsRNA,转基因植株通过释放EβF吸引蚜虫天敌,而蚜虫气味结合蛋白基因的沉默则降低了对天敌的警戒反应,进而增强天敌对蚜虫的捕食。

参考文献
[1]Yu XD, Wang GP, Huang SL, et al. Engineering plants for aphid resistance: current status and future perspectives.Theor Appl Genet, 2014, 127(10): 2065–2083.DOI: 10.1007/s00122-014-2371-2
[2]Vilcinskas A. Biology and Ecology of Aphids.Boca Raton: CRC Press, 2016: 238-254.
[3]Nault LR. Arthropod transmission of plant viruses: a new synthesis.Ann Entomol Soc Am, 1997, 90(5): 521–541.DOI: 10.1093/aesa/90.5.521
[4]Bhatia V, Bhattacharya R, Uniyal PL, et al. Host generated siRNAs attenuate expression of serine protease gene in Myzus persicae.PLoS ONE, 2012, 7(10): e46343.DOI: 10.1371/journal.pone.0046343
[5]Aqueel MA, Leather SR. Effect of nitrogen fertilizer on the growth and survival of Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Homoptera: Aphididae) on different wheat cultivars.Crop Prot, 2011, 30(2): 216–221.DOI: 10.1016/j.cropro.2010.09.013
[6]Sun YC, Guo HJ, Ge F. Plant-aphid interactions under elevated CO2: some cues from aphid feeding behavior.Front Plant Sci, 2016, 7: 502.
[7]Yu XD, Pickett J, Ma YZ, et al. Metabolic engineering of plant-derived (E)-β-farnesene synthase genes for a novel type of aphid-resistant genetically modified crop plants.J Integr Plant Biol, 2012, 54(5): 282–299.DOI: 10.1111/jipb.2012.54.issue-5
[8]Fan J, Liu Y, Zeng JG, et al. Advancement of new prevent and control technologies for aphids in wheat and vegetable.Chin J Appl Entomol, 2014, 51(6): 1413–1434.(in Chinese).
范佳, 刘勇, 曾建国, 等. 小麦与蔬菜蚜虫新型防控技术研究进展.应用昆虫学报, 2014, 51(6): 1413-1434.DOI:10.7679/j.issn.20951353.2014.166
[9]Jiang SS, Deng Q, Fan J, et al. Behavioral responses of Sitobion avenae (Hemiptera: Aphididae) to E-β-farnesene.Acta Entomol Sin, 2015, 58(7): 776–782.(in Chinese).
江珊珊, 邓青, 范佳, 等. 麦长管蚜对E-β-法尼烯的嗅觉行为反应.昆虫学报, 2015, 58(7): 776-782.
[10]Cui LL, Francis F, Heuskin S, et al. The functional significance of E-β-Farnesene: does it influence the populations of aphid natural enemies in the fields?.Biol Control, 2012, 60(2): 108–112.DOI: 10.1016/j.biocontrol.2011.11.006
[11]James C. ISAAA Brief 51-2015: Executive Summary. Ithaca, NY: ISAAA Resources Publications, 2016.
[12]Yu XD, Liu ZC, Huang SL, et al. RNAi-mediated plant protection against aphids.Pest Manag Sci, 2016, 72(6): 1090–1098.DOI: 10.1002/ps.2016.72.issue-6
[13]Macedo MLR, Oliveira CFR, Oliveira CT. Insecticidal activity of plant lectins and potential application in crop protection.Molecules, 2015, 20(2): 2014–2033.DOI: 10.3390/molecules20022014
[14]Hilder VA, Powell KS, Gatehouse AMR, et al. Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids.Transgenic Res, 1995, 4(1): 18–25.DOI: 10.1007/BF01976497
[15]Wang ZY, Zhang KW, Sun XF, et al. Enhancement of resistance to aphids by introducing the snowdrop lectin gene gna into maize plants.J Biosci, 2005, 30(5): 627–638.DOI: 10.1007/BF02703563
[16]Stoger E, Williams S, Christou P, et al. Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae.Mol Breeding, 1999, 5(1): 65–73.DOI: 10.1023/A:1009616413886
[17]Mi XX, Liu X, Yan HL, et al. Expression of the Galanthus nivalis agglutinin (GNA) gene in transgenic potato plants confers resistance to aphids.C R Biol, 2017, 340(1): 7–12.DOI: 10.1016/j.crvi.2016.10.003
[18]Yu Y, Wei ZM. Increased oriental armyworm and aphid resistance in transgenic wheat stably expressing Bacillus thuringiensis (Bt) endotoxin and Pinellia ternate agglutinin (PTA).Plant Cell Tiss Org Cult, 2008, 94(1): 33–44.DOI: 10.1007/s11240-008-9384-y
[19]Hogervorst PAM, W ckers FL, Woodring J, et al. Snowdrop lectin (Galanthus nivalis agglutinin) in aphid honeydew negatively affects survival of a honeydew-consuming parasitoid.Agric For Entomol, 2009, 11(2): 161–173.DOI: 10.1111/afe.2009.11.issue-2
[20]Birch ANE, Geoghegan IE, Majerus MEN, et al. Tri-trophic interactions involving pest aphids, predatory 2-spot ladybirds and transgenic potatoes expressing snowdrop lectin for aphid resistance.Mol Breeding, 1999, 5(1): 75–83.DOI: 10.1023/A:1009659316170
[21]Jones HD. Biotechnology of Major Cereals.Oxfordshire: CABI, 2016: 151–164.
[22]Abdellatef E, Will T, Koch A, et al. Silencing the expression of the salivary sheath protein causes transgenerational feeding suppression in the aphid Sitobion avenae.Plant Biotechnol J, 2015, 13(6): 849–857.DOI: 10.1111/pbi.2015.13.issue-6
[23]Mao JJ, Zeng FR. Feeding-based RNA intereference of a gap gene Is lethal to the pea aphid, Acyrthosiphon pisum.PLoS ONE, 2012, 7(11): e48718.DOI: 10.1371/journal.pone.0048718
[24]Pitino M, Coleman AD, Maffei ME, et al. Silencing of aphid genes by dsRNA feeding from plants.PLoS ONE, 2011, 6(10): e25709.DOI: 10.1371/journal.pone.0025709
[25]Christiaens O, Smagghe G. The challenge of RNAi-mediated control of hemipterans.Curr Opin Insect Sci, 2014, 6: 15–21.DOI: 10.1016/j.cois.2014.09.012
[26]Rossi M, Goggin FL, Milligan SB, et al. The nematode resistance gene Mi of tomato confers resistance against the potato aphid.Proc Natl Acad Sci USA, 1998, 95(17): 9750–9754.DOI: 10.1073/pnas.95.17.9750
[27]Rahbé Y, Deraison C, Bonadé-Bottino M, et al. Effects of the cysteine protease inhibitor oryzacystatin (OC-I) on different aphids and reduced performance of Myzus persicae on OC-I expressing transgenic oilseed rape.Plant Sci, 2003, 164(4): 441–450.DOI: 10.1016/S0168-9452(02)00402-8
[28]Ribeiro APO, Pereira EJG, Galvan TL, et al. Effect of eggplant transformed with oryzacystatin gene on Myzus persicae and Macrosiphum euphorbiae.J Appl Entomol, 2006, 130(2): 84–90.DOI: 10.1111/jen.2006.130.issue-2
[29]Carrillo L, Martinez M, lvarez-Alfageme F, et al. A barley cysteine-proteinase inhibitor reduces the performance of two aphid species in artificial diets and transgenic Arabidopsis plants.Transgenic Res, 2011, 20(2): 305–319.DOI: 10.1007/s11248-010-9417-2
[30]Goggin FL, Jia LL, Shah G, et al. Heterologous expression of the Mi-1.2 gene from tomato confers resistance against nematodes but not aphids in eggplant.Mol Plant Microbe Interact, 2006, 19(4): 383–388.DOI: 10.1094/MPMI-19-0383
[31]Ceci LR, Volpicella M, Rahbé Y, et al. Selection by phage display of a variant mustard trypsin inhibitor toxic against aphids.Plant J, 2003, 33(3): 557–566.DOI: 10.1046/j.1365-313X.2003.01645.x
[32]Bown DP, Wilkinson HS, Gatehouse JA. Differentially regulated inhibitor-sensitive and insensitive protease genes from the phytophagous insect pest, Helicoverpa armigera, are members of complex multigene families.Insect Biochem Mol Biol, 1997, 27(7): 625–638.DOI: 10.1016/S0965-1748(97)00043-X
[33]Jongsma MA, Bolter C. The adaptation of insects to plant protease inhibitors.J Insect Physiol, 1997, 43(10): 885–895.DOI: 10.1016/S0022-1910(97)00040-1
[34]Harsulkar AM, Giri AP, Patankar AG, et al. Successive use of non-host plant proteinase inhibitors required for effective inhibition of Helicoverpa armigera gut proteinases and larval growth.Plant Physiol, 1999, 121(2): 497–506.DOI: 10.1104/pp.121.2.497
[35]Babendreier D, Kalberer NM, Romeis J, et al. Influence of Bt-transgenic pollen, Bt-toxin and protease inhibitor (SBTI) ingestion on development of the hypopharyngeal glands in honeybees.Apidologie, 2005, 36(4): 585–594.DOI: 10.1051/apido:2005049
[36]Eichele JL, Dreyer J, Heinz R, et al. Soybean aphid response to their alarm pheromone E-β-farnesene (EβF).J Insect Behav, 2016, 29(4): 385–394.DOI: 10.1007/s10905-016-9567-z
[37]Fan J, Zhang Y, Francis F, et al. Orco mediates olfactory behaviors and winged morph differentiation induced by alarm pheromone in the grain aphid, Sitobion avenae.Insect Biochem Mol Biol, 2015, 64: 16–24.DOI: 10.1016/j.ibmb.2015.07.006
[38]Zhang RB, Wang B, Grossi G, et al. Molecular basis of alarm pheromone detection in aphids.Curr Biol, 2017, 27(1): 55–61.DOI: 10.1016/j.cub.2016.10.013
[39]Gu SH, Wu KM, Guo YY, et al. Identification and expression profiling of odorant binding proteins and chemosensory proteins between two wingless morphs and a winged morph of the cotton aphid Aphis gossypii Glover.PLoS ONE, 2013, 8(9): e73524.DOI: 10.1371/journal.pone.0073524
[40]Harrison KV, Preisser EL. Dropping behavior in the pea aphid (Hemiptera: Aphididae): how does environmental context affect antipredator responses?.J Insect Sci, 2016, 16(1): 89.DOI: 10.1093/jisesa/iew066
[41]Francis F, Lognay G, Haubruge E. Olfactory responses to aphid and host plant volatile releases: (E)-β-farnesene an effective kairomone for the predator Adalia bipunctata.J Chem Ecol, 2004, 30(4): 741–755.DOI: 10.1023/B:JOEC.0000028429.13413.a2
[42]Liu YJ, Chi BJ, Lin FJ, et al. Ecological functions of E-β-farnesene on aphids and their natural enemies in potato field.Chin J Appl Entomol, 2016, 27(8): 2623–2628.(in Chinese).
刘英杰, 迟宝杰, 林芳静, 等. 反-β-法尼烯对马铃薯蚜虫及其天敌的生态效应.应用生态学报, 2016, 27(8): 2623-2628.
[43]Verheggen FJ, Arnaud L, Bartram S, et al. Aphid and plant volatiles induce oviposition in an aphidophagous hoverfly.J Chem Ecol, 2008, 34(3): 301–307.DOI: 10.1007/s10886-008-9434-2
[44]Harmel N, Almohamad R, Fauconnier ML, et al. Role of terpenes from aphid-infested potato on searching and oviposition behavior of Episyrphus balteatus.Insect Sci, 2007, 14(1): 57–63.
[45]Yu XD, Jones HD, Ma YZ, et al. (E)-β-Farnesene synthase genes affect aphid (Myzus persicae) infestation in tobacco (Nicotiana tabacum).Funct Integr Genomics, 2012, 12(1): 207–213.DOI: 10.1007/s10142-011-0244-1
[46]Yu XD, Zhang YJ, Ma YZ, et al. Expression of an (E)-β-farnesene synthase gene from Asian peppermint in tobacco affected aphid infestation.Crop J, 2013, 1(1): 50–60.DOI: 10.1016/j.cj.2013.07.005
[47]Zhou HB, Chen LS, Liu Y, et al. Use of slow-release plant infochemicals to control aphids: a first investigation in a Belgian wheat field.Sci Rep, 2016, 6: 31552.DOI: 10.1038/srep31552
[48]Foster SP, Denholm I, Thompson R, et al. Reduced response of insecticide-resistant aphids and attraction of parasitoids to aphid alarm pheromone; a potential fitness trade-off.Bull Entomol Res, 2005, 95(1): 37–46.
[49]Kunert G, Otto S, R se US, et al. Alarm pheromone mediates production of winged dispersal morphs in aphids.Ecol Lett, 2005, 8(6): 596–603.DOI: 10.1111/ele.2008.8.issue-6
[50]Podjasek JO, Bosnjak LM, Brooker DJ, et al. Alarm pheromone induces a transgenerational wing polyphenism in the pea aphid, Acyrthosiphon pisum.Can J Zool, 2005, 83(8): 1138–1141.DOI: 10.1139/z05-108
[51]Su J, Zhu S, Zhang Z, et al. Effect of synthetic aphid alarm pheromone (E)-β-Farnesene on development and reproduction of Aphis gossypii (Homoptera: Aphididae).J Econ Entomol, 2006, 99(5): 1636–1640.DOI: 10.1093/jee/99.5.1636
[52]Roditakis E, Couzin ID, Balrow K, et al. Improving secondary pick up of insect fungal pathogen conidia by manipulating host behaviour.Ann Appl Biol, 2000, 137(3): 329–335.DOI: 10.1111/aab.2000.137.issue-3
[53]Cui LL, Dong J, Francis F, et al. E-β-farnesene synergizes the influence of an insecticide to improve control of cabbage aphids in China.Crop Prot, 2012, 35: 91–96.DOI: 10.1016/j.cropro.2012.01.003
[54]Lambers DHR, Schepers A. The effect of trans--farnesene, used as a repellant against landing aphid alatae in seed potato growing.Potato Res, 1978, 21(1): 23–26.DOI: 10.1007/BF02362255
[55]Sun YF, Qiao HL, Ling Y, et al. New analogues of (E)-β-farnesene with insecticidal activity and binding affinity to aphid odorant-binding proteins.J Agric Food Chem, 2011, 59(6): 2456–2461.DOI: 10.1021/jf104712c
[56]Qin YG, Zhang JP, Song DL, et al. Novel (E)-β-farnesene analogues containing 2-Nitroiminohexahydro-1, 3, 5-triazine: synthesis and biological activity evaluation.Molecules, 2016, 21(7): 825.DOI: 10.3390/molecules21070825
[57]Miyazawa M, Tamura N. Components of the essential oil from sprouts of Polygonum hydropiper L. ('Benitade').Flavour Fragr J, 2007, 22(3): 188–190.DOI: 10.1002/(ISSN)1099-1026
[58]Gibson RW, Pickett JA. Wild potato repels aphids by release of aphid alarm pheromone.Nature, 1983, 302(5909): 608–609.DOI: 10.1038/302608a0
[59]Bernasconi ML, Turlings TCJ, Ambrosetti L, et al. Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis.Entomol Exp Appl, 1998, 87(2): 133–142.DOI: 10.1046/j.1570-7458.1998.00315.x
[60]Vandermoten S, Mescher MC, Francis F, et al. Aphid alarm pheromone: an overview of current knowledge on biosynthesis and functions.Insect Biochem Mol Biol, 2012, 42(3): 155–163.DOI: 10.1016/j.ibmb.2011.11.008
[61]Schrader J, Bohlmann J. Biotechnology of Isoprenoids.Switzerland: Springer, 2015: 63-106.
[62]Crock J, Wildung M, Croteau R. Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha × piperita, L.) that produces the aphid alarm pheromone (E)-β-farnesene.Proc Natl Acad Sci USA, 1997, 94(24): 12833–12838.DOI: 10.1073/pnas.94.24.12833
[63]Maruyama T, Ito M, Honda G. Molecular cloning, functional expression and characterization of (E)-β-farnesene synthase from Citrus junos.Biol Pharm Bull, 2001, 24(10): 1171–1175.DOI: 10.1248/bpb.24.1171
[64]Huber DPW, Philippe RN, Godard KA, et al. Characterization of four terpene synthase cDNAs from methyl jasmonate-induced Douglas-fir, Pseudotsuga menziesii.Phytochemistry, 2005, 66(12): 1427–1439.DOI: 10.1016/j.phytochem.2005.04.030
[65]Picaud S, Brodelius M, Brodelius PE. Expression, purification and characterization of recombinant (E)-β-farnesene synthase from Artemisia annua.Phytochemistry, 2005, 66(9): 961–967.DOI: 10.1016/j.phytochem.2005.03.027
[66]Su SS, Liu XY, Pan GF, et al. In vitro characterization of a (E)-β-farnesene synthase from Matricaria recutita L. and its up-regulation by methyl jasmonate.Gene, 2015, 571(1): 58–64.DOI: 10.1016/j.gene.2015.06.037
[67]Starks CM, Back K, Chappell J, et al. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase.Science, 1997, 277(5333): 1815–1820.DOI: 10.1126/science.277.5333.1815
[68]Alonso WR, Rajaonarivony JI, Gershenzon J, et al. Purification of 4S-limonene synthase, a monoterpene cyclase from the glandular trichomes of peppermint (Mentha × piperita) and spearmint (Mentha spicata).J Biol Chem, 1992, 267(11): 7582–7587.
[69]Savage TJ, Ichii H, Hume SD, et al. Monoterpene synthases from gymnosperms and angiosperms: stereospecificity and inactivation by cysteinyl-and arginyl-directed modifying reagents.Arch Biochem Biophys, 1995, 320(2): 257–265.DOI: 10.1016/0003-9861(95)90008-X
[70]Aharoni A, Jongsma MA, Bouwmeester HJ. Volatile science? Metabolic engineering of terpenoids in plants.Trends Plant Sci, 2005, 10(12): 594–602.DOI: 10.1016/j.tplants.2005.10.005
[71]Chen F, Tholl D, D'Auria JC, et al. Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers.Plant Cell, 2003, 15(2): 481–494.DOI: 10.1105/tpc.007989
[72]Pickett JA, Khan ZR. Plant volatile-mediated signalling and its application in agriculture: successes and challenges.New Phytol, 2016, 212(4): 856–870.DOI: 10.1111/nph.14274
[73]Schnee C, K llner TG, Held M, et al. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores.Proc Natl Acad Sci USA, 2006, 103(4): 1129–1134.DOI: 10.1073/pnas.0508027103
[74]Sun Y, Huang XZ, Ning YS, et al. TPS46, a rice terpene synthase conferring natural resistance to bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus).Front Plant Sci, 2017, 8: 110.
[75]Beale MH, Birkett MA, Bruce TJA, et al. Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior.Proc Natl Acad Sci USA, 2006, 103(27): 10509–10513.DOI: 10.1073/pnas.0603998103
[76]Gao L, Zhang XT, Zhou F, et al. Expression of a peppermint (E)-β-farnesene synthase gene in rice has significant repelling effect on Bird Cherry-Oat aphid (Rhopalosiphum padi).Plant Mol Biol Rep, 2015, 33(6): 1967–1974.DOI: 10.1007/s11105-015-0888-4
[77]Bruce TJA, Aradottir GI, Smart LE, et al. The first crop plant genetically engineered to release an insect pheromone for defence.Sci Rep, 2015, 5: 11183.DOI: 10.1038/srep11183
[78]Verma SS, Sinha RK, Jajoo A. (E)-β-farnesene gene reduces Lipaphis erysimi colonization in transgenic Brassica juncea lines.Plant Signal Behav, 2015, 10(7): e1042636.
[79]Yu XD. Cloning and functional analysis of EβF synthase genes[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010 (in Chinese).
喻修道. EβF合成酶基因的克隆及功能分析[D]. 北京: 中国农业科学院, 2010.
[80]Wang GP, Yu XD, Fan J, et al. Expressing an (E)-β-farnesene synthase in the chloroplast of tobacco affects the preference of green peach aphid and its parasitoid.J Integr Plant Biol, 2015, 57(9): 770–782.DOI: 10.1111/jipb.12319
[81]Petrescu AS, Mondor EB, Roitberg BD. Subversion of alarm communication: do plants habituate aphids to their own alarm signals?.Can J Zool, 2001, 79(4): 737–740.DOI: 10.1139/z01-026
[82]de Vos M, Cheng WY, Summers HE, et al. Alarm pheromone habituation in Myzus persicae has fitness consequences and causes extensive gene expression changes.Proc Natl Acad Sci USA, 2010, 107(33): 14673–14678.DOI: 10.1073/pnas.1001539107
[83]Vickers CE, Bongers M, Liu Q, et al. Metabolic engineering of volatile isoprenoids in plants and microbes.Plant Cell Environ, 2014, 37(8): 1753–1775.DOI: 10.1111/pce.12316
[84]Wallaart TE, Bouwmeester HJ, Hille J, et al. Amorpha-4, 11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin.Planta, 2001, 212(3): 460–465.DOI: 10.1007/s004250000428
[85]Aharoni A, Giri AP, Deuerlein S, et al. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants.Plant Cell, 2003, 15(12): 2866–2884.DOI: 10.1105/tpc.016253
[86]Kappers IF, Aharoni A, van Herpen TWJM, et al. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis.Science, 2005, 309(5743): 2070–2072.DOI: 10.1126/science.1116232
[87]Aharoni A, Jongsma MA, Kim TY, et al. Metabolic engineering of terpenoid biosynthesis in plants.Phytochem Rev, 2006, 5(1): 49–58.DOI: 10.1007/s11101-005-3747-3
[88]De Moraes CM, Lewis WJ, Paré PW, et al. Herbivore-infested plants selectively attract parasitoids.Nature, 1998, 393(6685): 570–573.DOI: 10.1038/31219
[89]Cunillera N, Boronat A, Ferrer A. The Arabidopsis thaliana FPS1 gene generates a novel mRNA that encodes a mitochondrial farnesyl-diphosphate synthase isoform.J Biol Chem, 1997, 272(24): 15381–15388.DOI: 10.1074/jbc.272.24.15381
[90]Sanmiya K, Ueno O, Matsuoka M, et al. Localization of farnesyl diphosphate synthase in chloroplasts.Plant Cell Physiol, 1999, 40(3): 348–354.DOI: 10.1093/oxfordjournals.pcp.a029549
[91]Wu SQ, Schalk M, Clark A, et al. Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants.Nat Biotechnol, 2006, 24(11): 1441–1447.DOI: 10.1038/nbt1251

相关话题/植物 基因 烟草 昆虫 序列