1 北京林业大学 生物科学与技术学院,北京 100083;
2 中国农业科学院 饲料研究所,北京 100081
收稿日期:2017-04-13;接收日期:2017-05-31; 网络出版时间:2017-06-19 基金项目:国家自然科学基金(No. 31472127)资助
摘要:木聚糖酶是一种备受关注的糖苷水解酶,能够应用于酿造、饲料、制药、生物能源等多个领域,但是目前大部分木聚糖酶在低于30 ℃的环境中活力较低。为了获得在较低温度下具有高活力的木聚糖酶,从青霉L1 (Penicillium sp. L1)中克隆到一条GH11木聚糖酶基因XYN11A,并在毕赤酵母GS115中进行异源表达。经过纯化和酶学性质测定,该酶的最适pH和最适温度分别为3.5?4.0和55 ℃,能够在酸性和中性缓冲液(pH 1.0?7.0)中以及40 ℃下保持稳定,同时对所有已测试的金属离子和化合物都有一定的抗性。值得注意的是,该酶具有GH11家族中比较高的比活力6 700 U/mg,另外,该酶在较低温度20?40 ℃亦可展现出较高的酶活力(24%?58%)。经过16 h的榉木木聚糖水解实验,该木聚糖酶的水解产物主要是木二糖、木三糖和木四糖,几乎不产生单体木糖。因该酶同时具有产寡糖、较低温度下活力高以及嗜酸性等3种特性,XYN11A在食品和饲料工业中具有巨大的应用潜力。
关键词:木聚糖酶 高比活力 木寡糖
A highly active GH11 xylanase from Penicillium sp. L1 with potential applications in xylo-oligosaccharide production
Xiaoyu Wang1, Weina Liu2, Xiangming Xie1, Bin Yao2, Huiying Luo2
1 College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China;
2 Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Received: April 13, 2017; Accepted: May 31, 2017; Published: June 19, 2017
Supported by: National Natural Science Foundation of China (No. 31472127)
Corresponding author:Xiangming Xie. Tel: +86-10-62338416; E-mail: xxm1005@126.com
Huiying Luo. Tel: +86-10-82106065; E-mail: luohuiying@caas.cn
Abstract: Xylanase is a high-profile glycoside hydrolase with applications in brewing, feed, pharmacy and bioenergy industries, but most of xylanases are in active below 30 ℃. In order to obtain low temperature active xylanase, a xylanase gene, XYN11A, was cloned from Penicillium sp. L1 and expressed in Pichia pastoris GS115. After purification and enzyme assay, optimal pH and temperature were determined to be 3.5 to 4.0 and 55 ℃. This enzyme was stable at acid and neutral condition (pH 1.0 to 7.0) or under the treatment of 40 ℃ for 1 hour. This xylanase displayed strong resistance to all tested ions and chemicals. Noteworthily, XYN11A maintained a higher activity of 6 700 U/mg than a lot of GH11 xylanase, and demonstrated higher activity (24% to 58%) at lower temperature from 20 to 40 ℃. After beechwood xylan hydrolysis for 16 h, the hydrolysates consisted mainly of xylobiose, xylotriose and xylotetraose and barely of xylose, thus XYN11A could be used for the production of prebiotic xylooligosaccharide. Possessing the features of acidophilic, highly active at lower temperature and oligosaccharide production, XYN11A demonstrated great potential in food and feed industrials.
Key words: xylanase high specific activity xylo-oligosaccharide
木聚糖是一种广泛存在的可再生资源,其贮存量非常巨大。所有的木质纤维素中都有木聚糖的存在,其水解产物为木寡糖和木糖,其中木寡糖也可以水解为单体木糖。木寡糖是木二糖及寡聚度超过2的一系列多糖的总称。这些寡糖已经被认为是一种低热量的膳食纤维,并且具有益生作用[1],可用作食品和饲料添加剂。木寡糖不容易在胃里被降解,而更容易完整地进入到肠道,被肠道中的有益菌如双歧杆菌、乳酸菌等利用,而不能被其他细菌如大肠杆菌、葡萄球菌等利用[2]。有益菌繁殖的同时可以抑制其他菌群(特别是有害菌)的生长,起到了调节肠道微生态和改善肠道功能的作用,同时有害菌的数目下降,减少了有害菌产生的有毒物质对机体的毒害。当益生菌生长得到促进时,乳酸菌会产生乳酸等物质,导致肠道pH环境变酸,可提高矿物离子比如钙的溶解性,促进吸收;有益菌的生长可以调节肠道功能,减少结肠癌的患病风险[3]。正因为木寡糖的多种益生作用,它也被誉为超级益生元。除此之外,木聚糖完全水解的产物,单体木糖也可以经过一些微生物的发酵直接发酵生产生物乙醇[4]。
酶法水解木聚糖为寡糖或者单糖因节能、环保[5]并有利于可持续发展,而被广泛研究。其中内切-β-木聚糖酶因能够随机切割木聚糖的主链,高效降解木聚糖成寡糖或者单糖而备受青睐。根据碳水化合物数据库统计,大多数内切木聚糖酶都来自糖苷水解酶GH10和GH11家族,少部分来自GH5、GH8和GH30家族。GH10家族的木聚糖酶的三级结构为一个TIM-Barrel结构,即(β/α)8结构,这个结构可以承载多种功能[6],所以GH10家族木聚糖酶通常被发现可以水解除木聚糖以外的底物,包括大麦葡聚糖[7]和羧甲基纤维素[8]。而GH11家族的木聚糖酶被称为真正的木聚糖酶,因为目前的报道中,该种酶几乎只能降解木聚糖,且GH11木聚糖酶更容易受到侧链取代基和1, 3键的干扰,倾向于水解木聚糖产生体积更大的产物,这与GH10家族不同,GH11木聚糖酶的产物也可以被GH10木聚糖酶进一步降解[9]。
GH11木聚糖酶除了容易产生寡糖、底物专一以外,还具有分子量小、最适酶促反应的pH和温度多样化等特点。所有目前已经报道的GH11木聚糖酶分子量都小于25 kDa,并且尽管具有相同的三级结构,不同菌株来源的GH11木聚糖酶表现出截然不同的最适pH和最适温度。来源于双孢菌Bispora sp. MEY-1的Xyn11A最适pH为2.6[10],而来源于热青紫链霉菌Streptomyces thermocyaneoviolaceus的XylanaseB表现出pH 5.0的最佳活力[11],相比之下,来源于芽孢杆菌Bacillus sp. 41M-1的XynJ的最适pH为9.0[12],明显偏向在碱性环境中进行催化反应。GH11木聚糖酶的最适温度同样多种多样,禾谷镰孢菌Fusarium graminearum的XylA最适温度较低为35 ℃[13],而S. thermocyaneoviolaceus的XylanaseB是一个中温木聚糖酶,最适温度60 ℃[10],作为高温木聚糖酶的代表,嗜热网团菌Dictyoglomus thermophilum的XynB在80 ℃表现出最大酶活[14]。
本研究介绍的木聚糖酶来源于青霉Penicillium sp. L1,具有高比活力和寡糖产量高的特点,并且在较低温度下,也能表现出较高的酶活力。
1 材料与方法1.1 菌株、培养基、载体和化学药品Penicillium sp. L1,存放于中国普通微生物菌种保藏管理中心(CGMCC),可用马铃薯葡萄糖培养基(PDB)活化和培养。大肠杆菌感受态Trans1-T1购自北京全式金生物公司(北京,中国),用于基因克隆。pPIC9载体用作基因片段克隆并作为转化毕赤酵母(GS115)的表达载体。榉木木聚糖购自Sigma-Aldrich公司,用作测定酶活的底物。DNA纯化试剂盒购自Omega公司,限制性内切酶购自TaKaRa公司(Otsu, Japan),总RNA提取试剂盒以及T4 DNA连接酶购自Promega公司(Madison, WI)。KOD neo plus聚合酶购自东洋纺公司(TOYOBO, Osaka, Japan)。其他所有化学试剂如乙醇、甲醇、乙酸等都是分析纯,并且可以通过购买获得。
1.2 cDNA的克隆通过高通量测序对P. sp. L1进行全基因组测序,测序后经过CAZy注释,该菌中不存在10家族木聚糖酶基因,而只有一个11家族木聚糖酶基因,获取该木聚糖酶的基因序列命名为XYN11A,预测内含子,并分别设计特异引物(表 1),PCR扩增含有信号肽的序列和去掉信号肽含有酶切位点的序列。
表 1 本研究中使用的引物Table 1 Primers used in this study
Primer name | Primer sequence (5'–3') |
11AF | ATGTCCCTTTTCAAGAGCTTATTCGTGG |
11AR | TCATGAAACTGTGATTGTTGAGGATCCAC |
11A_EcoF | CGGAATTCCTTCCTGGTGATTACCACAAGCGG |
11A_NotR | ATTTGCGGCCGCTCATGAAACTGTGATTGTTGAGGATCCAC |
表选项
将活化的菌体在诱导培养基中培养3 d后,收集菌体提取总RNA,并且反转录cDNA,反转录试剂盒为东洋纺的ReverTra Ace-a-? kit (TOYOBO, Osaka, Japan)。将反转录的cDNA用作模板进行XYN11A基因扩增。扩增到的PCR产物经过EcoRⅠ和NotⅠ双酶切,并且连接入同样经过EcoRⅠ和NotⅠ双酶切的pPIC9载体进行克隆、Sanger法测序和表达。
1.3 序列分析基因测序的结果使用BLASTx进行验证,分析扩增序列完整性,并提交至GenBank数据库(ID:KY926795)。Translate工具(http://web.expasy.org/translate/)可用于氨基酸序列翻译的Proparam工具用于预测理论分子量(MW)和等电点(pI)。SignalP4.0可用于预测信号肽序列。Modeller 9.13用于XYN11A的同源建模。Pymol 0.99rc用于展示出同源模型。
1.4 XYN11A的表达和纯化重组质粒pPIC9-XYN11A经过Bgl Ⅱ线性化之后,用电转化法转入毕赤酵母GS115。毕赤酵母培养和蛋白表达所涉及的方法和培养基与Luo等[15]的一致。BMGY培养基配方:酵母提取物10 g/L,蛋白胨20 g/L,YNB 134 g/L,生物素0.004 g/L,甘油(1%, V/V);BMMY培养基配方:酵母提取物10 g/L,蛋白胨20 g/L,YNB 134 g/L,生物素0.004 g/L,甲醇(0.5%, V/V)。用10 mL试管进行转化子筛选,选取酶活最高的阳性转化子接入盛有300 mL灭菌BMGY培养基的1 L三角瓶进行扩大培养,30 ℃、220 r/min培养48 h后,将培养液4 500 r/min离心,弃上清后用150 mL的BMMY培养基重悬菌体,并在1 L三角瓶中30 ℃、220 r/min进行发酵培养48 h后,含有菌体的培养液以离心的方式分离菌体和培养液。上清发酵液用截留体积5 kDa的膜包和蠕动泵(Vivaflow)进行浓缩,之后用pH 7.2的20 mmol/L柠檬酸磷酸氢二钠于4 ℃过夜透析。过夜的酶液需要在4 ℃、12 000 r/min离心,才能用FPLC的HiTrap Q阴离子层析柱进行分离纯化。平衡的A液为20 mmol/L柠檬酸磷酸氢二钠(pH 7.2),B液为A液中加入1 mol/L NaCl,用于线性洗脱(0?1.0 mol/L)蛋白。所有色谱峰都进行酶活检测,具有较高酶活的峰进行SDS-PAGE检测,测定其纯度。达到电泳纯的样品进行EndoH脱糖基处理。最后,蛋白浓度的检测方法以Lowry法为主[16],NanoVue Plus (GE Healthcare, Uppsala, Sweden)微量分光光度计为辅助,牛血清白蛋白为标准品。
1.5 XYN11A的酶学性质测定在此研究中,定义以1% (W/V)的榉木木聚糖为底物,55 ℃、pH 4.0下测定10 min的酶活力为100%。还原糖产量的测定方法为3’5-二硝基水杨酸DNS法[17]。实验中所用的缓冲液为甘氨酸-HCl (pH 1.0?2.5),柠檬酸磷酸氢二钠(pH 2.5?8.0)以及甘氨酸-NaOH (pH 8.0?11.0)。最适pH的测定温度为55 ℃,pH 1.0到6.0。在pH 1.0至12.0、37 ℃下处理1 h,再于55 ℃和pH 4.0反应10 min测定处理之后的残余酶活力为pH稳定性。最适反应温度的测定范围是30到80 ℃,pH 4.0。温度稳定性在40 ℃、50 ℃和60 ℃下保温1 h,每隔10 min取一次样放置在冰上保存,待全部取出后再统一测定。
5 mmol/L和10 mmol/L的ZnSO4、KCl、Fe2(SO4)3、NaCl、NiSO4、CaCl2、SDS、EDTA、MnSO4、MgCl2、CuSO4和β-巯基乙醇用于测试金属离子和化学试剂抗性。
酶促反应动力学常数测定条件为pH 4.0,温度55 ℃,反应时长5 min,底物浓度为1?10 mg/mL。使用GraphPad Prism 5.01版(La Jolla, CA)进行数据分析和米氏方程回归。
1.6 水解产物分析每毫升200 mmol/L pH 4.0溶解的榉木木聚糖加入2 U的XYN11A,并在45 ℃保温16 h,未加入酶的榉木木聚糖溶液用作对照组,同样于45 ℃保温16 h。取100 μL以ddH2O稀释50倍的水解产物进行高效离子色谱(High Performance Anion Exchange Chromatography-pulsed Amperometric Detector, HPAEC-PAD)分析,该仪器装配有保护柱(Guard Column; 4 mm×50 mm)和分析柱(Analytical Column; 4 mm×250 mm)、脉冲电流检测器ICS-5000,流动相为100 mmol/L NaOH,流速为1 mL/min,控温于22 ℃进行洗脱。木糖、木二糖、木三糖、木四糖、木五糖和木六糖用作标准品。
2 结果与分析2.1 XYN11A的序列和结构分析全长的XYN11A基因为657 bp,编码218个氨基酸和一个终止密码子。前19个氨基酸是信号肽序列(图 1),去掉信号肽序列的成熟蛋白质预测分子量为21.7 kDa,电点为4.14。通过序列比对(图 2),该酶与来源于青霉Penicillium sp. 40的xylanase A有着最高序列一致性(86%),并与来源于解纤维篮状菌Talaromyces cellulolyticus的GH11木聚糖酶晶体结构3WP3有着最高序列一致性(71%),使用3WP3作为模板进行同源建模,模拟出的XYN11A结构为典型的β-jelly roll结构,侧面说明XYN11A为11家族木聚糖酶。将该结构提交到HotSpot Wizard 2.0,两个保守位点Glu94和Glu186预测为催化位点(图 3),与来源于折褶热多孢菌Thermopolyspora flexuosa的XYN11A的催化位点Glu87和Glu176相对应(图 2)[18]。
图 1 XYN11A的核酸序列和氨基酸序列(信号肽部分用黑框标记) Figure 1 Nucleotide sequence and amino acid sequence of XYN11A, and the signal peptide was marked with black box. |
图选项 |
图 2 XYN11A、P. sp.40、3WP3和T. flexuosa的序列比对(两个保守的催化位点用红箭头表示) Figure 2 Sequence alignment of XYN11A, P. sp.40, 3WP3 and T. flexuosa. Two conserved catalytic sites were indicated with red arrows. |
图选项 |
图 3 XYN11A的同源建模模型(催化位点预测为Glu94和Glu186) Figure 3 Homologous model of XYN11A. The catalytic sites were predicted to be Glu94 and Glu186. |
图选项 |
2.2 表达和纯化XYN11A去掉信号肽后,进行毕赤酵母GS115的异源表达,并于1 L三角瓶中进行摇瓶级发酵产酶。粗酶液经过膜包浓缩,进行透析和阴离子层析柱纯化(表 2),回收率17%。纯化后的样品进行EndoH脱糖基处理,并用SDS-PAGE进行分子量分析。XYN11A电泳检测的分子量为大约22 kDa,与理论分子量21.7 kDa相近(图 4)。
图 4 XYN11A的SDS-PAGE检测图 Figure 4 SDS-PAGE result of XYN11A. M: marker, 1: crude enzyme, 2: purified sample, 3: EndoH treated purified sample. |
图选项 |
表 2 重组XYN11A的纯化过程Table 2 Summary of the recombinant XYN11A purification
Purification step | Protein concentration (μg/mL) | Total activity (U) | Specific activity (U/mg) | Recovery rate (%) | Volume (mL) |
Crude enzyme | 83 | 256 800 | 5 501 | – | 600 |
Vivaflow | 952 | 248 200 | 5 966 | 97 | 50 |
Anion exchange | 136 | 43 300 | 6 561 | 17 | 50 |
表选项
2.3 酶学性质测定XYN11A是一个酸性中温木聚糖酶,最适pH 3.5–4.0,最适温度为55 ℃。能够在pH 2.0到5.0之间保持40%以上的活力,同时该酶在20 ℃到70 ℃之间都能测到酶活。
作为一个酸性木聚糖酶,该酶进行不同pH处理时,pH 1.0到7.0之间能保持82%以上的酶活力,在pH 8.0时,柠檬-酸磷酸氢二钠缓冲液中同样能保持82%以上的活力,但是在甘氨酸-氢氧化钠缓冲液中却只能保持大约50%的活性,两者差异明显。在pH 8.0不同的缓冲液中进行pH稳定性测定,200 mmol/L的磷酸氢二钠-磷酸二氢钠和磷酸氢二钠-磷酸二氢钾缓冲液中,剩余酶活力都在50%左右,在200 mmol/L磷酸二氢钾-氢氧化钠中,剩余活性约44%,以及在50 mmol/L的Tris-HCl中剩余38%酶活性。选择甘氨酸-氢氧化钠缓冲液测定碱性环境中的pH稳定性,pH 9.0时,剩余酶活力约40%,pH 10.0时剩余酶活力约22%。
40 ℃、50 ℃、60 ℃三者之间的热稳定性测定中,40 ℃保温1 h,酶活力没有受损,但是当温度提高时,随着时间的变化,该酶的稳定性开始下降,60 ℃处理10 min时,还剩余大约40%的活力,而处理20 min时酶活力几乎为零(图 5)。
图 5 XYN11A的酶学性质 Figure 5 Enzymatic properties of XYN11A. (A) pH optima. (B) Temperature optima. (C) pH stability. (D) Temperature stability. |
图选项 |
XYN11A测定的Vmax、Km、kcat、kcat/Km以及比活力分别为10 142 U/mg、5 mg/mL、4 226 1/s、878 mL/(s·mg)以及6 700 U/mg。
对于5 mmol/L和10 mmol/L的金属离子和化学物质测试实验,XYN11A表现出对大多数的测试离子和化学物质都有抗性,但是Fe3+和SDS能够抑制大部分该酶的活力。Fe3+在5 mmol/L时,能够抑制该酶60%左右的活力,而在10 mmol/L时,能够抑制90%左右的活力;SDS在5 mmol/L时已经能够抑制90%左右的活力,当进行10 mmol/L实验时,剩余酶活仅2%。其他一些金属离子如Cu2+、Zn2+、K+等也可抑制该酶10%至20%的活力。另外,β-巯基乙醇在10 mmol/L时,可以提高该酶大约20%左右的活力(表 3)。
表 3 测试的金属离子和化学试剂Table 3 Tested ions and chemicals
Ions and chemicals | Relative activity (%) | |
5 mmol/L | 10 mmol/L | |
Zn2+ | 76.7±3.1 | 87.0±4.4 |
K+ | 76.6±1.2 | 93.5±3.4 |
Fe3+ | 39.4±2.3 | 9.5±3.3 |
Na+ | 92.4±2.4 | 82.5±2.7 |
Ni2+ | 102.0±1.1 | 92.6±3.5 |
Ca2+ | 97.1±4.4 | 92.2±1.4 |
SDS | 11.0±2.3 | 1.9±1.1 |
EDTA | 90.7±4.5 | 86.6±3.3 |
Mn2+ | 97.0±2.5 | 88.8±1.1 |
Mg2+ | 102.3±2.2 | 96.9±2.4 |
β-mercaptoethanol | 100.6±1.7 | 120.9±1.5 |
Cu2+ | 88.3±2.3 | 89.5±3.1 |
表选项
2.4 水解产物分析根据高效离子色谱的分析结果,XYN11A的主要产物是木二糖725 μg/mL (33.1%)、木三糖943 μg/mL (43.0%)和木四糖441 μg/mL (20.1%),并伴随有微量的木糖31 μg/mL (1.4%)、木五糖32 μg/mL (1.5%)和木六糖20 μg/mL (0.8%)生成(图 6)。
图 6 XYN11A的水解产物分析 Figure 6 Products analysis of XYN11A. |
图选项 |
3 讨论在本研究中,从P. sp. L1中克隆到一个高比活的木聚糖酶基因XYN11A,并且在毕赤酵母GS115中进行表达。通过酶学性质测定,该酶的比活力显著高于大多数的GH11木聚糖酶,比如来源于特异腐质霉Humicola insolens的Xyn11A (比活力为1 275 U/mg)[19],来自于链霉菌Streptomyces sp. SWU10的rXynSW1(比活力为77.4 U/mg)[20],来自于多能篮状菌Talaromyces versatilis中的4个GH11木聚糖酶[21],以及通过分子改良提高催化特性的SrxynFM (310.0 U/mg)[22]。该酶为中温木聚糖酶,最适温度为55 ℃并且在20 ℃到40 ℃之间具有较高的酶活力,大约为最适温度的20% (1 300 U/mg)至60% (4 000 U/mg),很多高比活的木聚糖酶在20 ℃到40 ℃的低温下,催化活性显著下降,甚至不发生催化反应,如来源于无毛毛壳菌Achaetomium sp. Xz-8的两个11家族木聚糖酶在20 ℃时比活几乎为零[23]。XYN11A与低温木聚糖酶(最适温度30 ℃左右)相比,30 ℃时的比活力也显著高于大部分低温木聚糖酶(表 4),并且在20 ℃也有1 300 U/mg左右的比活力,使得该酶适合作为渔业饲料添加剂[24]。另外,该酶的酸性和中性pH的稳定性比较优良,在酸性条件下比链霉菌Streptomyces sp. TN119来源的XynB119更加稳定[25]。
表 4 XYN11A与其他低温木聚糖酶比活力比较Table 4 The specific activities of XYN11A and other cold-adapted xylanase
Xylanase | Specific activity at 30 ℃ (U/mg) | References |
XYN11A | 2 400.00 | This study |
r-XynA | 4.11 | [26] |
XynGR40 | 537.00 | [27] |
Xyn10A | 12.00 | [28] |
XynA | 77.00 | [29] |
表选项
该酶具有非常显著的产寡糖特性,产物大部分是木二糖到木四糖。木聚糖酶木单糖在生产寡糖时会作为副产物伴随生成,但是不易与寡糖分离,而该酶几乎不产生单糖,减少了去除单糖的难度。与近年来同样具有产寡糖特性的木聚糖酶相比,XYN11A的比活力显著高于XynM (118.3 U/mg)[30]、reBaxA50 (9.4 U/mg)[31]和MtXyn11A (2 232 U/mg)[32]。
XYN11A酶在低温下同样具有较高酶活力,因此该酶适合在低温下生产寡糖。这个性质使得该酶适合用于面包和馒头制作[33],在面粉团发酵时加入,不仅能提高面筋网络的弹性,提高馒头或者面包的口感[34],而且木寡糖的释放也提高了益生作用。另外,该酶也在渔业以外的其他饲料工业中展现出应用潜力:首先,该酶在4.8时具有较高的酶活,适合于在胃肠道中反应[35];第二,该酶在20至40 ℃之间表现出较高的酶活力,该温度与胃肠道温度大概相符;第三,该酶的pH稳定性优良,可以通过胃随食糜进入肠道;最后,该木聚糖酶产生的木寡糖可以进一步维持肠道菌群的平衡,促进动物健康[32, 36]。
综上所述,木聚糖酶XYN11A是一个酸性、具有高比活力的木聚糖酶,并且与其他木聚糖酶相比,在20至40 ℃之间表现出较高的酶活力,还具备优良的产寡糖特性。这些特性使得XYN11A可以用于木寡糖的生产,同时在面包和馒头制作以及饲料工业中展现出重要的应用潜力。
参考文献
[1] | Nabarlatz D, Ebringerová A, Montané D. Autohydrolysis of agricultural by-products for the production of xylo-oligosaccharides.Carbohydr Polym, 2007, 69(1): 20–28.DOI: 10.1016/j.carbpol.2006.08.020 |
[2] | Gullón P, Moura P, Esteves MP, et al. Assessment on the fermentability of xylooligosaccharides from rice husks by probiotic bacteria.J Agric Food Chem, 2008, 56(16): 7482–7487.DOI: 10.1021/jf800715b |
[3] | Grootaert C, Delcour JA, Courtin CM, et al. Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine.Trends Food Sci Tech, 2007, 18(2): 64–71.DOI: 10.1016/j.tifs.2006.08.004 |
[4] | Dodd D, Cann IKO. Enzymatic deconstruction of xylan for biofuel production.GCB Bioenergy, 2009, 1(1): 2–17.DOI: 10.1111/gcbb.2009.1.issue-1 |
[5] | Maitan-Alfenas GP, Visser EM, Guimar es VM. Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products.Curr Opin Food Sci, 2015, 1: 44–49.DOI: 10.1016/j.cofs.2014.10.001 |
[6] | Wierenga RK. The TIM-barrel fold: a versatile framework for efficient enzymes.FEBS Lett, 2001, 492(3): 193–198.DOI: 10.1016/S0014-5793(01)02236-0 |
[7] | Wang XY, Luo HY, Yu WN, et al. A thermostable Gloeophyllum trabeum xylanase with potential for the brewing industry.Food Chem, 2016, 199: 516–523.DOI: 10.1016/j.foodchem.2015.12.028 |
[8] | Xue XL, Wang R, Tu T, et al. The N-terminal GH10 domain of a multimodular protein from Caldicellulosiruptor bescii is a versatile xylanase/ -glucanase that can degrade crystalline cellulose.Appl Environ Microbiol, 2015, 81(11): 3823–3833.DOI: 10.1128/AEM.00432-15 |
[9] | Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases.FEMS Microbiol Rev, 2005, 29(1): 3–23.DOI: 10.1016/j.femsre.2004.06.005 |
[10] | Luo HY, Wang YR, Li J, et al. Cloning, expression and characterization of a novel acidic xylanase, XYL11B, from the acidophilic fungus Bispora sp. MEY-1.Enzyme Microb Technol, 2009, 45(2): 126–133.DOI: 10.1016/j.enzmictec.2009.05.002 |
[11] | Shin JH, Choi JH, Lee OS, et al. Thermostable xylanase from Streptomyces thermocyaneoviolaceus for optimal production of xylooligosaccharides.Biotechnol Bioprocess Eng, 2009, 14(4): 391–399.DOI: 10.1007/s12257-008-0220-3 |
[12] | Nakamura S, Wakabayashi K, Nakai R, et al. Production of alkaline xylanase by a newly isolated alkaliphilic Bacillus sp. strain 41M-1.World J Microbiol Biotechnol, 1993, 9(2): 221–224.DOI: 10.1007/BF00327842 |
[13] | Beli n T, van Campenhout S, van Acker M, et al. Cloning and characterization of two endoxylanases from the cereal phytopathogen Fusarium graminearum and their inhibition profile against endoxylanase inhibitors from wheat.Biochem Biophys Res Commun, 2005, 327(2): 407–414.DOI: 10.1016/j.bbrc.2004.12.036 |
[14] | Morris DD, Gibbs MD, Chin CWJ, et al. Cloning of the xynB gene from Dictyoglomus thermophilum Rt46B.1 and action of the gene product on kraft pulp.Appl Environ Microbiol, 1998, 64(5): 1759–1765. |
[15] | Luo HY, Li J, Yang J, et al. A thermophilic and acid stable family-10 xylanase from the acidophilic fungus Bispora sp. MEY-1.Extremophiles, 2009, 13(5): 849–857.DOI: 10.1007/s00792-009-0272-0 |
[16] | Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent.J Biol Chem, 1951, 193(1): 265–275. |
[17] | Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar.Anal Chem, 1959, 31(3): 426–428.DOI: 10.1021/ac60147a030 |
[18] | Li H, Turunen O. Effect of acidic amino acids engineered into the active site cleft of Thermopolyspora flexuosa GH11 xylanase.Biotechnol Appl Biochem, 2015, 62(4): 433–440.DOI: 10.1002/bab.2015.62.issue-4 |
[19] | Yang XZ, Shi PJ, Huang HQ, et al. Two xylose-tolerant GH43 bifunctional β-xylosidase/ -arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan.Food Chem, 2014, 148: 381–387.DOI: 10.1016/j.foodchem.2013.10.062 |
[20] | Deesukon W, Nishimura Y, Sakamoto T, et al. Purification, characterization of GH11 endo-β-1, 4-ylanase from thermotolerant Streptomyces sp. SWU10 and overexpression in Pichia pastoris KM71H.Mol Biotechnol, 2013, 54(1): 37–46.DOI: 10.1007/s12033-012-9541-8 |
[21] | Lafond M, Guais O, Maestracci M, et al. Four GH11 xylanases from the xylanolytic fungus Talaromyces versatilis act differently on (arabino)xylans.Appl Microbiol Biotechnol, 2014, 98(14): 6339–6352.DOI: 10.1007/s00253-014-5606-x |
[22] | Li Q, Sun BG, Jia HY, et al. Engineering a xylanase from Streptomyce rochei L10904 by mutation to improve its catalytic characteristics.Int J Biol Macromol, 2017, 101: 366–372.DOI: 10.1016/j.ijbiomac.2017.03.135 |
[23] | Zhao L, Meng K, Bai YG, et al. Two family 11 xylanases from Achaetomium sp. Xz-8 with high catalytic efficiency and application potentials in the brewing industry.J Agric Food Chem, 2013, 61(28): 6880–6889.DOI: 10.1021/jf4001296 |
[24] | Ganguly S, Dora KC, Sarkar S, et al. Supplementation of prebiotics in fish feed: a review.Rev Fish Biol Fish, 2013, 23(2): 195–199.DOI: 10.1007/s11160-012-9291-5 |
[25] | Zhou JP, Shi PJ, Zhang R, et al. Symbiotic Streptomyces sp. TN119 GH 11 xylanase: a new pH-stable, protease-and SDS-resistant xylanase.J Ind Microbiol Biotechnol, 2011, 38(4): 523–530.DOI: 10.1007/s10295-010-0795-5 |
[26] | Wang SY, Hu W, Lin XY, et al. A novel cold-active xylanase from the cellulolytic myxobacterium Sorangium cellulosum So9733-1: gene cloning, expression, and enzymatic characterization.Appl Microbiol Biotechnol, 2012, 93(4): 1503–1512.DOI: 10.1007/s00253-011-3480-3 |
[27] | Wang GZ, Luo HY, Wang YR, et al. A novel cold-active xylanase gene from the environmental DNA of goat rumen contents: direct cloning, expression and enzyme characterization.Bioresour Technol, 2011, 102(3): 3330–3336.DOI: 10.1016/j.biortech.2010.11.004 |
[28] | Chen SC, Kaufman MG, Miazgowicz KL, et al. Molecular characterization of a cold-active recombinant xylanase from Flavobacterium johnsoniae and its applicability in xylan hydrolysis.Bioresour Technol, 2013, 128: 145–155.DOI: 10.1016/j.biortech.2012.10.087 |
[29] | Guo B, Chen XL, Sun CY, et al. Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-β-1, 4-xylanase from marine Glaciecola mesophila KMM 241.Appl Microbiol Biotechnol, 2009, 84(6): 1107–1115.DOI: 10.1007/s00253-009-2056-y |
[30] | Nieto-Domínguez M, de Eugenio LI, York-Durán MJ, et al. Prebiotic effect of xylooligosaccharides produced from birchwood xylan by a novel fungal GH11 xylanase.Food Chem, 2017, 232: 105–113.DOI: 10.1016/j.foodchem.2017.03.149 |
[31] | Xu X, Liu MQ, Huo WK, et al. Obtaining a mutant of Bacillus amyloliquefaciens xylanase A with improved catalytic activity by directed evolution.Enzyme Microb Technol, 2016, 86: 59–66.DOI: 10.1016/j.enzmictec.2016.02.001 |
[32] | Ma R, Bai YG, Huang HQ, et al. Utility of thermostable xylanases of Mycothermus thermophilus in generating prebiotic Xylooligosaccharides.J Agric Food Chem, 2017, 65(6): 1139–1145.DOI: 10.1021/acs.jafc.6b05183 |
[33] | Van Haesendonck I, Broekaert W, Georis J, et al. Bread with increased arabinoxylo-oligosaccharide content: US, 9480262. 2008-01-16. |
[34] | Butt MS, Tahir-Nadeem M, Ahmad Z, et al. Xylanases and their applications in baking industry.Food Tech Biotechnol, 2008, 46(1): 22–31. |
[35] | Van Campenhout L, Somers I, Van de Craen S, et al. In vitro test to evaluate protein degradation by feed enzymes: recent advances in enzymes in grain processing//European Symposium on Enzymes in Grain Processing. 3rd ed. Leuven, Belgium: Laboratory of Food Chemistry, 2003: 387-390. |
[36] | De Maesschalck C, Eeckhaut V, Maertens L, et al. Effects of xylo-oligosaccharides on broiler chicken performance and microbiota.Appl Environ Microbiol, 2015, 81(17): 5880–5888.DOI: 10.1128/AEM.01616-15 |