曹德民1,2, 宋晓峰3, 朱宝利1,2,4,5
1. 中国科学院大学存济医学院, 北京 100049;
2. 中国科学院病原微生物与免疫学重点实验室, 北京 100101;
3. 中国疾病预防控制中心传染病预防控制所, 北京 102206;
4. 病原微生物耐药与耐药基因组学北京市重点实验室, 北京 100101;
5. 西南医科大学基础医学院, 四川 泸州 646000
收稿日期:2020-02-27;修回日期:2020-04-30;网络出版日期:2020-06-20
基金项目:中国科学院战略性光导科技专项(XDB29020203);国家科技重大专项(2018ZX10201-001)
*通信作者:朱宝利, Tel:+86-10-64807362;E-mail:zhubaoli@im.ac.cn.
摘要:肠道微生物影响着人体的营养、代谢、免疫等多种生理活动,对人体健康有非常重要的影响。目前的研究表明,肠道微生物在病毒感染性疾病的感染及预后过程中发挥着重要的作用。本文分别总结了肠道病毒感染、非肠道病毒感染与肠道微生物的相互作用关系以及微生态调节干预病毒感染等内容,以期为相关研究的进一步深入和病毒感染性疾病的防治提供新思路。
关键词:肠道微生物病毒感染性疾病免疫系统抗病毒
Gut microbiota in human virus infection
Demin Cao1,2, Xiaofeng Song3, Baoli Zhu1,2,4,5
1. Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China;
2. CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
3. Chinese Center for Disease Control and Prevention(China CDC), Beijing 102206, China;
4. Beijing Key Laboratory of Antimicrobial Resistance and Pathogen Genomics, Beijing 100101, China;
5. Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, China
Received: 27 February 2020; Revised: 30 April 2020; Published online: 20 June 2020
*Corresponding author: Baoli Zhu, Tel:+86-10-64807362;E-mail:zhubaoli@im.ac.cn.
Foundation item: Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB29020203) and by the National Science and Technology Major Project (2018ZX10201-001)
Abstract: Gut microbiota affects human nutrition, metabolism, immune development and functionality, and other physiological activities. Recent findings have revealed the roles of gut microbiota in susceptibility and prognosis in virus infection diseases. Here, we summarize the relationship, interaction between gut microbiota and enteric virus infection diseases, as well as non-enteric virus infection diseases. In addition, the potential therapies for modulating microbiota to prevent or treat virus infection diseases are discussed. This review will provide new ideas for further related research on prevention and control of virus infection diseases.
Keywords: gut microbiotavirus infection diseaseimmune systemantiviral therapy
人体肠道中存在与人体自身细胞等量的共生菌,其种类多达数千种,同时还有多种多样的病毒、真菌和古细菌[1],这些与人体共生的微生物共同组成了肠道微生物(gut microbiota),这些微生物的群落及其组学的集合就是肠道微生物组(gut microbiome)。目前的研究表明肠道微生物与人体是一种互利共生关系,对人体健康有非常重要的作用[2-3],其对宿主的作用主要可以概括为3个方面:(1)物质的分解与转化;(2)免疫系统的成熟与功能发挥;(3)保护宿主免受病原微生物的侵袭与感染。
病毒感染性疾病是一类对人类健康产生巨大威胁的全球性公共卫生问题,其病原体多种多样,包括诺如病毒、脊髓灰质炎病毒、艾滋病毒、流感病毒和新型冠状病毒等,这些病毒的感染和传播对人类健康以及经济社会发展造成了巨大的损失。
人体健康状态变化反映了宿主-共生菌群-病原体之间复杂的平衡关系。同种病毒在不同人群中感染的结果有很大差异,以往的研究表明这与肠道微生物的结构差异有密切的关系。主要体现在以下3个方面:(1)肠道微生物能与病原物发生直接的相互作用,直接抑制或促进病毒的侵入或复制等过程;(2)肠道微生物对维持肠壁结构的完整性有重要作用;(3)肠道微生物对机体免疫系统的分化、训练、成熟及功能行使等方面都发挥着基础性作用。
本文主要对近年来肠道微生物与病毒感染相关的研究进行了梳理,以期理清病毒感染与肠道微生物之间的相互作用关系,为相关研究的进一步深入和病毒感染性疾病的防治提供新思路。
1 肠道内病毒感染与肠道微生物 脊髓灰质炎病毒(Poliovirus,PV)、诺如病毒(Norovirus,NV)和轮状病毒(Rotavirus,RV)等多种肠道病毒都能够引起胃肠道疾病,一般通过粪口途径传播,在全世界每年都能造成大量感染和死亡。目前的研究发现肠道微生物在这类病毒感染及宿主抗病毒过程中扮演着多种角色,其作用可能是正向的也可能是负向的,目前已报道的机制主要包括以下几种(表 1)[4]:(1)直接促进病毒感染,部分细菌可以增加病毒颗粒的稳定性,促进病毒对靶细胞的附着;(2)肠道微生物抑制人体免疫系统的抗病毒免疫反应,从而促进病毒的感染;(3)菌体成分能够激活机体的抗病毒免疫反应,帮助机体抵御病毒的感染。
表 1. 肠道内病毒感染与肠道菌群相互作用关系 Table 1. The relationship between enterovirus infection and gut microbiome
Virus | Intestinal flora changes caused by infection | Interaction mechanism with intestinal microbiome | References |
PV | Not reported | ① LPS or peptidoglycan can enhance virus activity; ② LPS can enhance the binding ability of viruses and cell surface receptors; ③ LPS or other polysaccharide components can enhance virus stability. | [6-8] |
NV | Bacteriodetes was reduced Proteobacteria was enriched | ① HBGA can bind to viral capsid protein and enhance its ability to infect cells; ② IgA induced by intestinal microbes can promote Norovirus infection; ③ Bile acid can change the structure of intestinal flora and promote the replication of Norovirus; | [10, 13, 15-16, 18] |
RV | Not reported | ① The bacterial flagellar component activates dendritic cell TLR-5, induces the production of IL-22, and triggers the expression of protective genes of intestinal epithelial cells. Besides, it can induce IL-8 production through the receptor NLRC-4, thereby mediating the immune system to kill infected cells; ② Some intestinal bacteria can inhibit the production of IgA and IgG; ③ Segmented filamentous bacteria (SFB) can directly reduce the rotavirus infectivity, change the gene expression pattern of intestinal epithelial cells, accelerate the renewal of infected epithelial cells to help mice resist viral infections. | [22, 24-25] |
表选项
1.1 脊髓灰质炎病毒 脊髓灰质炎病毒是一种常见的肠道感染病毒,属于小RNA病毒科,该病毒通过粪-口途径传播,主要易感人群是5岁以下儿童,尚无针对该病毒的特效药物,可通过多次接种脊髓灰质炎疫苗进行预防[5]。该病毒在感染人体后会在肠道中进行复制,也会扩散至中枢神经系统,在感染后数天内出现麻痹性脊髓灰质炎。
有动物研究表明,使用抗生素清除小鼠肠道菌群可以显著降低小鼠对脊髓灰质炎病毒的敏感性,将病毒在肠道中的复制能力降到最低,如果将病毒与细菌或脂多糖(lipopolysaccharide,LPS)或肽聚糖共培养,病毒的活力则显著升高[6];在体外试验中,该病毒对粪便中分离的Lactobacillus johnsonii等多种细菌均表现出很强的吸附作用,这些细菌也可以显著提高脊髓灰质炎病毒的感染能力和核酸重组功能[7]。该病毒通过细胞表面的受体(poliovirus receptor,PVR或CD155)介导进入真核生物细胞,将该病毒与LPS共培养可以显著增强其与PVR的结合能力,导致病毒感染细胞的能力显著增强[8]。此外,细菌的LPS或其他多糖分子与脊髓灰质炎病毒颗粒结合在增强病毒热稳定性的同时,还能够延长病毒颗粒在含氯漂白剂中的存活时间,这更有利于其在人群中的传播[8]。
1.2 诺如病毒 诺如病毒是一种在全世界广泛传播的能够引起急性胃肠炎的主要病原体之一,全人群普遍易感,尤其是对儿童和免疫力低下的成人有较大威胁[9]。由于该病毒的抗原存在快速变异能力,机体免疫系统很难形成长期有效的免疫保护作用。
诺如病毒衣壳蛋白能够与多种共生菌表达的组织血型抗原(histo-blood group antigen,HBGA)多糖分子发生直接的相互作用[10],这类多糖分子可以辅助诺如病毒附着并侵染人体细胞,增强其感染能力[11-12]。动物实验发现,肠道菌群结构的变化能够显著改变诺如病毒的侵染能力,利用抗生素去除小鼠的肠道菌群能够对多型诺如病毒的感染产生抑制作用[13-14],而利用正常小鼠的粪便做粪菌移植则能够恢复诺如病毒对机体的感染能力;缺乏肠道菌群引起的抗诺如病毒感染能力增强现象与小鼠固有免疫系统的IFN-γ途径密切相关[14]。此外,肠道中的分泌型IgA也能够促进诺如病毒对小鼠的感染,而肠道微生物对于IgA分泌细胞的分化及表达分泌作用都有非常重要的影响[15]。
肠道菌群一方面通过调节机体免疫系统来影响诺如病毒感染,还可以利用其代谢产物对病毒的复制进行干预。胆汁酸能够与诺如病毒衣壳蛋白结合,这种结合能够使诺如病毒颗粒的复制量显著增加,同时还能够增强诺如病毒衣壳蛋白与HBGA的结合能力[16]。
在无菌小鼠体内,诺如病毒感染有利于其肠道结构的正常发育及淋巴细胞的分化成熟,而不会引起炎症反应或导致疾病发生[17],这表明真核细胞的病毒对于维持肠道稳态及粘膜免疫功能的发育成熟有一定的积极作用。
有报道称诺如病毒感染也能影响肠道菌群的组成,感染者肠道菌群结构发生显著变化,厚壁菌门与拟杆菌门细菌比例显著升高[18];C57BL/6小鼠在MNV-1感染后也表现出同样的肠道菌群比例变化[19],然而也有研究在诺如病毒感染后的小鼠肠道中并未观察到类似的结果[20]。因此,诺如病毒感染对哺乳动物肠道微生物结构和功能的影响仍需要进一步深入探究。
1.3 轮状病毒 轮状病毒是一种无包膜、分节段双链RNA病毒,是引起婴幼儿腹泻的主要病原体之一。尽管有疫苗能够对其进行预防,但每年仍能造成全球超过20万人死亡,尤其是在低收入国家更易发生流行[21]。
抗生素处理的小鼠在感染轮状病毒后,粪便中病毒抗体含量降低,肠组织中病毒载量降低,但排毒时间增长[22]。对于哺乳期的小鼠在抗生素处理并感染轮状病毒后,其腹泻发生率与严重程度均显著降低[22]。通过抗体水平检测发现,在9-11周时间段内,粪便IgA、血清IgA、血清IgG在抗生素处理组中水平更高[22],这也表明肠道菌可能会抑制抗病毒抗体长时间保持较高水平。轮状病毒减毒疫苗是预防轮状病毒感染最经济有效的手段,但在低收入地区其保护力却相对较低,Harris等通过巣式病例对照匹配研究发现,轮状病毒疫苗响应组Proteobacteria以及Clostridium cluster XI的丰度显著较高[23]。以上研究表明肠道菌群在轮状病毒疫苗刺激抗体产生过程中扮演着重要的角色,对其机制的阐明将对轮状病毒高效疫苗的研发提供重要的理论基础。
分节丝状菌Segmented filamentous bacteria (SFB)能够直接降低轮状病毒感染力,还能够改变肠上皮细胞基因表达模式,加快受感染上皮细胞的更新以帮助小鼠抵御病毒感染[24]。研究表明,直接给予LPS、鞭毛和CpG等菌体成分能够帮助个体抵抗病毒感染[25-26]。进一步研究发现,细菌鞭毛可激活小鼠树突细胞(Toll-like receptor 5,TLR5),诱导IL-22的产生,进一步引发肠上皮细胞保护型基因表达,抑制轮状病毒侵入;此外,鞭毛还能通过NOD-like receptor C4 (NLRC4)诱导IL-8产生,从而介导免疫系统对轮状病毒感染细胞的清除[25]。因此,直接或间接利用菌体成分激活机体抗病毒免疫,从而预防或治疗病毒感染性疾病也是值得进一步探索的方向。
1.4 其他肠道病毒 Enterovirus 71 (EV71)是引起手足口病的病原体之一,婴幼儿是发病率和死亡率最高的人群。该病毒感染人体后,多为自限性,严重者可出现神经系统疾病,该病主要是通过粪-口途径进行传播[27]。研究表明,预先使用益生菌干预可以显著降低EV71对哺乳动物细胞的侵染作用,例如,Lactobacillus reuteri Protectis[28];在动物实验中,给小鼠预防性地使用热灭活的Enterococcus faecalis可以显著增强小鼠体内的抗病毒反应,降低脊髓、脑干、运动皮层等部位中的病毒载量,显著降低小鼠感染EV71后血清中的IL-1和MCP-1水平,减弱病毒感染造成的临床症状[29]。说明使用益生菌预防EV71感染方面存在较大潜力,但其安全性和有效性仍需动物实验及临床研究提供更多的参考数据。
2 非肠道病毒感染与肠道微生物 流感病毒(influenza virus,IFV)、人类免疫缺陷病毒(human Immunodeficiency Virus,HIV)、乙肝病毒(hepatitis B virus,HBV)等非肠道病毒在感染过程中可能与肠道微生物并没有直接的接触,但可通过间接的方式影响病毒感染力、感染后症状及转归等过程。二者相互作用机制主要包括(表 2):(1)病毒在靶器官诱导产生的免疫细胞或免疫因子转移到肠道改变肠道菌群结构,并引起免疫损伤或并发感染;(2)肠道微生物自身成分或其代谢产物刺激肠内粘膜免疫细胞分化和诱导产生免疫因子,并通过循环系统到达不同靶器官,发挥抗病毒作用;(3)肠道微生物自身成分或其代谢产物通过循环系统到达靶器官,影响其生理或免疫状态,从而对病毒感染产生影响。
表 2. 肠道外病毒感染与肠道菌群相互作用关系 Table 2. The relationship between extra-intestinal viral infection and gut microbiome
Virus | Intestinal flora changes caused by infection | Interaction mechanism with intestinal microbiome | References |
IFV | α-diversity was reduced. Clostridium sp. 7243FAA, Escherichia coli, Enterococcus faecium etc. were enriched. | ① CD4+ T cell expressing IFN-γinduced by influenza virus infection can be recruited to the small intestine to change the structure of intestinal flora, which can induce the differentiation of intestinal Th17 cells, thereby induce pathological immunoreaction; ② Type I interferon produced by the lungs induced by influenza virus can cause intestinal flora disorder; ③ The adjustment of intestinal flora structure can enhance the host's antiviral immune response; | [31-33] |
HIV | α-diversity was reduced. Prevotella was enriched; Bacteroides was reduced. | ① Changes in the abundance of Prevotella and Bacteroides bacteria can enhance the inflammatory response of intestinal mucosa; ② Disorders of intestinal flora and chronic inflammatory reaction destroy the integrity of intestinal mucosa, which is related to the replication of HIV virus in intestinal lymphoid tissue. | [40-42, 55] |
HBV | Bifidobacteria, Lactobacillus, Bacteroides, Alistipes, Asaccharobacter, Butyricimonas, Ruminococcus etc. were reduced; Enterococcus, Actinomyces, Megamonas, Enterobacteriaceae etc. were enriched. | ① LPS and other intestinal flora enter the liver through the portal vein and induce the production of various inflammatory factors such as TNF-α, IL-1, IL-6, causing acute liver injury. ② The bacteria component (such as LPS) enters the liver, which can induce Kupffer cells to produce IL-10, inhibiting the specific immune response against HBV; ③ Unmethylated CpG DNA can be recognized by TLR9 on the surface of liver cells, activate DCs cells, promote the proliferation of B cells and T cells, increase the production of interferon, which would have an protection effect on liver cells. | [48-50, 52-53] |
RSV | Not reported. | ① The short-chain fatty acids can induce the differentiation of Th1 cells and enhance the body's ability to resist RSV infection; ② Acetic acid can activate IFN-β by regulating GPR43 and interferon receptor to exert antiviral activity. | [56-57] |
表选项
2.1 流感病毒 流感病毒是一种能引起人出现急性呼吸道疾病的病原体,还能够广泛感染鸟类以及哺乳类动物[30]。无并发症的患者一般在5-10 d内可自愈,但少数并发症或重症感染者也可因呼吸或多脏器衰竭而死亡。目前世界范围内的主要流行株为甲(A)型和乙(B)型流感病毒,由于流感病毒表面抗原能够迅速发生变异,目前并没有长效流感疫苗用于预防接种。
临床观察发现,人体在感染流感病毒后常常会同时伴随胃肠炎症状,而这种胃肠炎症状并非流感病毒与肠道直接作用引起的,肺部在受到流感病毒感染后分化出表达IFN-γ的CD4+ T细胞,该细胞在被招募至小肠后可以改变肠道菌群的结构,而肠道菌群结构的改变则刺激了肠上皮细胞分泌IL-15,进而诱导Th17细胞的分化,最终导致肠道出现病理性损伤[31]。有研究表明H7N9感染会导致肠道菌群多样性降低,Escherichia coli和Enterococcus faecium丰度显著升高[32]。也有研究发现流感病毒诱导肺部产生的I型干扰素能够导致肠道菌群紊乱,主要表现在严格厌氧共生菌的减少和变形菌门细菌的增加,这种肠道微生态的紊乱可能会进一步增加沙门氏菌感染的风险[33]。肠道菌群的改变能够对流感的恢复产生多方面的影响[34]。在使用抗生素清除肠道菌群的情况下,小鼠肺部无法产生足够水平的CD4+和CD8+ T细胞用于对抗流感病毒的感染,而这种免疫失调能够通过肺部或肠道补充Toll样受体(Toll-like receptors,TLR)的配体恢复正常[35]。
双歧杆菌(Bifidobacterium spp.)或乳酸菌(Lactobacillus spp.)类的细菌能够激活Th1介导的抗病毒免疫反应,同时抑制Th2相关免疫细胞的活性[36-37]。Steed等研究发现Clostridium orbiscindens可以将食物中的黄酮类化合物降解后转化为脱氨基酪氨酸(desaminotyrosine),该物质可以增强机体的I型干扰素信号,减少流感病毒感染对肺部造成的免疫损伤[38]。这表明肠道菌群对于宿主产生免疫反应、抵抗流感病毒的感染有非常重要的作用,使用益生菌或益生元调节宿主免疫功能,可能会显著缓解流感病毒导致的生理损伤。
2.2 人类免疫缺陷病毒 人类免疫缺陷病毒是引起艾滋病的病原体,是一种逆转录病毒,其通过感染人类免疫细胞,引起人类免疫缺陷疾病。肠道是免疫细胞的重要集聚地之一,HIV感染会损害CD4+ T细胞,进而引起严重的免疫系统功能障碍,并导致多种固有免疫和适应性免疫功能细胞的缺失。此外,HIV的感染还可以引起肠上皮细胞凋亡和胞间连接紧密性降低,而肠道粘膜的损伤及免疫力的降低能造成肠道菌群结构的变化及部分细菌移位,这也可能是导致艾滋病病人出现慢性炎症反应和慢性并发症(如心脏病、慢性肾病、慢性肝炎和骨质疏松等)的重要原因。
研究表明HIV感染能够引起肠道菌群结构和功能的改变,健康人、HIV感染者以及接受抗病毒治疗的人群之间肠道菌群结构存在显著的差异,HIV感染者的肠道菌群多样性相对于正常人显著降低,而抗病毒治疗并不能使肠道菌群恢复至健康人状态[39-40]。多项研究都显示HIV感染后人体肠道微生物的α-多样性显著降低[41],以及在感染人群中普雷沃氏菌属(Prevotella)细菌丰度的增加和拟杆菌属(Bacteroides)细菌丰度的降低[40-42]。而部分普雷沃氏菌已被证明能够增强Th-17介导的炎症反应,拟杆菌属细菌则与肠道淋巴结中的恒定天然杀伤细胞(invariant natural killer T,iNTK)的产生相关,其能够通过产生IL-4和IL-10弱化炎症反应并减少菌群异位的发生[43]。
利用益生菌做HIV感染辅助治疗的研究表明,治疗过程中服用双歧杆菌属(Bifidobacterium spp.)、乳酸菌属(Lactobacillus spp.)或链球菌属(Streptococcus spp.)细菌能够显著地增加病人CD4+ T细胞数量,降低CD8+、CD38+、HLA-DR+ T细胞数量[44-46]。然而,目前相关的大部分研究都还停留在相关性分析层面,肠道菌群在HIV感染、持留、药物反应及慢性并发症等方面发挥的作用仍需要进一步探索,对肠道菌群进行靶向干预可能为未来HIV的预防及治疗提供新的方法和手段。
2.3 乙肝病毒 乙肝病毒是一种DNA病毒,属于嗜肝病毒科,HBV慢性感染可导致人体出现肝衰竭、肝硬化甚至肝癌。全球每年大约有88万人死于乙肝病毒感染引起的并发症,慢性乙肝病毒感染已经成为一个全球性的公共健康问题[47]。
HBV感染后引起的肝损伤不仅是由于病毒进入肝细胞引起的异常细胞免疫反应,同样也可以由肠道菌群紊乱造成的固有免疫反应引起。肝脏的固有免疫系统依赖于TLRs对HBV的识别,随后促进I型干扰素的释放,激活NK细胞,引发抗病毒反应,抑制HBV复制[48]。有研究表明,HBV感染的肝衰竭患者肠壁通透性增加,使得肠道内LPS等细菌组分能够通过门静脉转移至肝脏,被肝脏细胞表面的TLR4识别,活化CD14+枯否氏细胞,进而激活肝脏中的炎症级联反应,激活NF-κB相关的信号通路,产生TNF-α、IL-1和IL-6等多种炎症因子,从而引起急性肝损伤[49];同时,活化的枯否氏细胞可以产生免疫抑制因子IL-10,而IL-10可以抑制针对HBV的特异性免疫反应,阻碍了免疫系统对HBV的清除[50]。相反的,未甲基化CpG DNA则可以通过被肝脏细胞表面的TLR9识别,活化DCs细胞,促进B细胞和T细胞的增殖,增加干扰素的产生,进而对肝细胞产生免疫保护作用。肠道中Lactobacillus casei、Lactobacillus plantarum、Lactobacillus rhamnosus和Bifidobacteria等细菌携带有高丰度的未甲基化CpG DNA,而在HBV感染者的肠道中乳酸菌和双歧杆菌属的细菌丰度均显著降低,削弱了针对HBV的免疫反应[51]。
与健康人相比,携带有HBV的慢性肝炎患者肠道菌群发生显著改变,Bifidobacteria、Lactobacillus、Bacteroides、Alistipes、Asaccharobacter、Butyricimonas和Ruminococcus等细菌的丰度显著降低,而Enterococcus、Actinomyces、Megamonas以及Enterobacteriaceae的细菌丰度则显著升高,Bifidobacteria/ Enterobacteriaceae比例显著降低,肠道中毒力因子的多样性显著升高[52-53]。动物研究结果表明,成熟的肠道菌群可以增强机体对HBV的清除能力,而使用抗生素消除肠道菌群之后,机体对病毒的清除能力显著降低[54]。
尽管抗病毒药物在治疗HBV感染方面有着显著疗效,但仍然无法避免HBV感染发展成肝硬化、肝衰竭,最终导致肝癌的发生。因此,深度解析“肠-肝轴”的作用机理对于理解肠道菌群在肝脏的免疫保护或病理性变化中的复杂作用至关重要,肠道菌群也成为了治疗HBV感染的潜在靶点。
2.4 其他非肠道病毒 呼吸道合胞病毒(respiratory syncytial virus,RSV)是一种季节性病原体,能够导致两岁以下儿童发生严重的病毒性支气管炎,每年会导致10万多名儿童的死亡。研究表明肠道菌群组成的改变以及短链脂肪酸(short chain fatty acids,SCFAs)在肠道内浓度的变化与RSV易感性相关。近期一项临床研究表明妊娠妇女增加水果和蔬菜(富含能够被肠道菌群转化为SCFAs的膳食纤维)能够有效预防新生儿出现RSV感染。动物实验中也表明膳食纤维能够促进机体产生Th1细胞,增强对抗RSV感染的免疫保护作用。这种保护作用主要依赖于肠道菌群及其代谢产物乙酸盐。同时补充毛螺菌属(Lachnospiraceae spp.)细菌与纤维素食物可以增高血清中乙酸盐水平[57-58],而乙酸盐可通过调节GPR43和干扰素受体(IFNAR)激活IFN-β发挥抗病毒活性[56]。
西尼罗病毒(West Nile Virus)、登革热病毒(Dengue Virus)以及寨卡病毒(Zika Virus)同属于黄病毒科黄病毒属,均属于虫媒病毒,这3种病毒每年在全球范围内造成的感染人数超过4亿,超过10亿人受到感染威胁,目前尚无特效治疗药物[59-60]。研究人员利用“鸡尾酒”抗生素对小鼠的肠道菌群进行消除,随后分别用西尼罗病毒、登革热病毒和寨卡病毒对小鼠模型进行感染,结果发现缺少正常肠道菌群的小鼠模型在接种病毒后死亡率显著增加,淋巴结、脾脏及大脑中的病毒特异性CD8+ T细胞数量显著减少,肠道和大脑中的病毒载量显著增加,表现出对病毒更高的敏感性,说明肠道菌群在保护宿主免受这一类病毒感染方面发挥着积极作用[61]。
3 结论和展望 近年来对肠道微生物与不同类型病毒感染之间互作机制的认识越来越深入,但还存在许多问题,目前许多研究结果仍然停留在关联性分析的层面,其互作机制并不明确,且多数研究结果主要是通过细胞学实验或动物实验获得,可能与人体内的互作机制并不一致。
从先前的研究中我们已经发现肠道微生物在病毒感染过程中扮演着非常重要的角色,一方面病毒进化出了多种利用肠道微生物帮助其感染或复制的策略;另一方面肠道微生物也能通过直接作用或调节免疫功能的间接方式抑制病毒感染。病毒感染与肠道微生物之间相互作用机制的阐明对于制定更加有效的预防和治疗策略至关重要。比如,在肠道病毒的防治中,是否可以设计抑制特定病毒与细菌相互作用的靶向抗病毒药物;在携带乙肝病毒的慢性肝炎患者治疗中,利用益生菌制剂是否可以辅助人体免疫系统清除病毒,同时降低炎症反应的病理损害。
总之,病毒感染与肠道微生物之间的互作关系是一个非常值得深入探究的领域。未来还需要开发新的技术和研究方法,对肠道微生物与病毒感染之间相互作用的具体分子和免疫机制进行更深入研究,这将进一步加深我们对宿主-共生微生物-病原体之间复杂关系的认识,帮助我们更好地防治病毒感染性疾病,并将对我国公共卫生事业产生深远的积极影响。
References
[1] | Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell, 2016, 164(3): 337-340. DOI:10.1016/j.cell.2016.01.013 |
[2] | Rowan-Nash AD, Korry BJ, Mylonakis E, Belenky P. Cross-domain and viral interactions in the microbiome. Microbiology and Molecular Biology Reviews, 2019, 83(1): e00044-18. |
[3] | Zmora N, Suez J, Elinav E. You are what you eat: Diet, health and the gut microbiota. Nature Reviews Gastroenterology & Hepatology, 2019, 16(1): 35-56. |
[4] | Karst SM. The influence of commensal bacteria on infection with enteric viruses. Nature Reviews Microbiology, 2016, 14(4): 197-204. DOI:10.1038/nrmicro.2015.25 |
[5] | Chumakov K, Ehrenfeld E, Wimmer E, Agol VI. Vaccination against polio should not be stopped. Nature Reviews Microbiology, 2007, 5(12): 952-958. DOI:10.1038/nrmicro1769 |
[6] | Kuss SK, Best GT, Etheredge CA, Pruijssers AJ, Frierson JM, Hooper LV, Dermody TS, Pfeiffer JK. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science, 2011, 334(6053): 249-252. DOI:10.1126/science.1211057 |
[7] | Erickson AK, Jesudhasan PR, Mayer MJ, Narbad A, Winter SE, Pfeiffer JK. Bacteria facilitate enteric virus co-infection of mammalian cells and promote genetic recombination. Cell Host & Microbe, 2018, 23(1): 77-88.e5. |
[8] | Robinson CM, Jesudhasan PR, Pfeiffer JK. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus. Cell Host & Microbe, 2014, 15(1): 36-46. |
[9] | Ahmed SM, Hall AJ, Robinson AE, Verhoef L, Premkumar P, Parashar UD, Koopmans M, Lopman BA. Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. The Lancet Infectious Diseases, 2014, 14(8): 725-730. DOI:10.1016/S1473-3099(14)70767-4 |
[10] | Li D, Breiman A, Le Pendu J, Uyttendaele M. Binding to histo-blood group antigen-expressing bacteria protects human norovirus from acute heat stress. Frontiers in Microbiology, 2015, 6: 659. |
[11] | Huang P, Farkas T, Zhong W, Tan M, Thornton S, Morrow A L, Jiang X. Norovirus and histo-blood group antigens: Demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. Journal of Virology, 2005, 79(11): 6714-6722. DOI:10.1128/JVI.79.11.6714-6722.2005 |
[12] | Karst SM. Identification of a novel cellular target and a co-factor for norovirus infection - B cells & commensal bacteria. Gut Microbes, 2015, 6(4): 266-271. DOI:10.1080/19490976.2015.1052211 |
[13] | Jones MK, Watanabe M, Zhu S, Graves CL, Keyes LR, Grau KR, Gonzalez-Hernandez MB, Iovine NM, Wobus CE, Vinjé J, Tibbetts SA, Wallet SM, Karst SM. Enteric bacteria promote human and mouse norovirus infection of B cells. Science, 2014, 346(6210): 755-759. DOI:10.1126/science.1257147 |
[14] | Baldridge MT, Nice TJ, McCune BT, Yokoyama CC, Kambal A, Wheadon M, Diamond MS, Ivanova Y, Artyomov M, Virgin HW. Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection. Science, 2015, 347(6219): 266-269. DOI:10.1126/science.1258025 |
[15] | Turula H, Bragazzi Cunha J, Mainou BA, Ramakrishnan SK, Wilke CA, Gonzalez-Hernandez MB, Pry A, Fava J, Bassis CM, Edelman J, Shah YM, Corthesy B, Moore BB, Wobus CE. Natural secretory immunoglobulins promote enteric viral infections. Journal of Virology, 2018, 92(23): e00826-18. |
[16] | Ettayebi K, Crawford SE, Murakami K, Broughman JR, Karandikar U, Tenge VR, Neill FH, Blutt SE, Zeng XL, Qu L, Kou BJ, Opekun AR, Burrin D, Graham DY, Ramani S, Atmar RL, Estes MK. Replication of human noroviruses in stem cell-derived human enteroids. Science, 2016, 353(6306): 1387-1393. DOI:10.1126/science.aaf5211 |
[17] | Kernbauer E, Ding Y, Cadwell K. An enteric virus can replace the beneficial function of commensal bacteria. Nature, 2014, 516(7529): 94-98. DOI:10.1038/nature13960 |
[18] | Nelson AM, Walk ST, Taube S, Taniuchi M, Houpt ER, Wobus CE, Young VB. Disruption of the human gut microbiota following norovirus infection. PLoS One, 2012, 7(10): e48224. DOI:10.1371/journal.pone.0048224 |
[19] | Hickman D, Jones MK, Zhu S, Kirkpatrick E, Ostrov DA, Wang XY, Ukhanova M, Sun YJ, Mai V, Salemi M, Karst SM. The effect of malnutrition on norovirus infection. mBio, 2014, 5(2): e01032-13. |
[20] | Nelson AM, Elftman MD, Pinto AK, Baldridge M, Hooper P, Kuczynski J, Petrosino JF, Young VB, Wobus CE. Murine norovirus infection does not cause major disruptions in the murine intestinal microbiota. Microbiome, 2013, 1: 7. DOI:10.1186/2049-2618-1-7 |
[21] | Crawford SE, Ramani S, Tate JE, Parashar UD, Svensson L, Hagbom M, Franco MA, Greenberg HB, O'Ryan M, Kang G, Desselberger U, Estes MK. Rotavirus infection. Nature Reviews Disease Primers, 2017, 3: 17083. DOI:10.1038/nrdp.2017.83 |
[22] | Uchiyama R, Chassaing B, Zhang BY, Gewirtz AT. Antibiotic treatment suppresses rotavirus infection and enhances specific humoral immunity. The Journal of Infectious Diseases, 2014, 210(2): 171-182. |
[23] | Harris V, Ali A, Fuentes S, Korpela K, Kazi M, Tate J, Parashar U, Wiersinga WJ, Giaquinto C, De Weerth C, De Vos WM. Rotavirus vaccine response correlates with the infant gut microbiota composition in pakistan. Gut Microbes, 2018, 9(2): 93-101. DOI:10.1080/19490976.2017.1376162 |
[24] | Shi ZD, Zou J, Zhang Z, Zhao X, Noriega J, Zhang BY, Zhao CY, Ingle H, Bittinger K, Mattei LM, Pruijssers AJ, Plemper RK, Nice TJ, Baldridge MT, Dermody TS, Chassaing B, Gewirtz AT. Segmented filamentous bacteria prevent and cure rotavirus infection. Cell, 2019, 179(3): 644-658.e13. DOI:10.1016/j.cell.2019.09.028 |
[25] | Zhang BY, Chassaing B, Shi ZD, Uchiyama R, Zhang Z, Denning TL, Crawford SE, Pruijssers AJ, Iskarpatyoti JA, Estes MK, Dermody TS, Ouyang WJ, Williams IR, Vijay-Kumar M, Gewirtz AT. Prevention and cure of rotavirus infection via TLR5/NLRC4-mediated production of IL-22 and IL-18. Science, 2014, 346(6211): 861-865. DOI:10.1126/science.1256999 |
[26] | J?rgensen JB, Johansen LH, Steiro K, Johansen A. CpG DNA induces protective antiviral immune responses in Atlantic Salmon (Salmo salar L.). Journal of Virology, 2003, 77(21): 11471-11479. DOI:10.1128/JVI.77.21.11471-11479.2003 |
[27] | Ooi MH, Wong SC, Lewthwaite P, Cardosa MJ, Solomon T. Clinical features, diagnosis, and management of enterovirus 71. The Lancet Neurology, 2010, 9(11): 1097-1105. DOI:10.1016/S1474-4422(10)70209-X |
[28] | Ang LYE, Too HKI, Tan EL, Chow TKV, Shek PCL, Tham E, Alonso S. Antiviral activity of Lactobacillus reuteri protectis against coxsackievirus A and enterovirus 71 infection in human skeletal muscle and colon cell lines. Virology Journal, 2016, 13: 111. DOI:10.1186/s12985-016-0567-6 |
[29] | Chen MF, Weng KF, Huang SY, Liu YC, Tseng SN, Ojcius DM, Shih SR. Pretreatment with a heat-killed probiotic modulates monocyte chemoattractant protein-1 and reduces the pathogenicity of influenza and enterovirus 71 infections. Mucosal Immunology, 2017, 10(1): 215-227. |
[30] | Alexander DJ. Ecological aspects of influenza a viruses in animals and their relationship to human influenza: a review. Journal of the Royal Society of Medicine, 1982, 75(10): 799-811. |
[31] | Wang J, Li FQ, Wei HM, Lian ZX, Sun R, Tian ZG. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated th17 cell-dependent inflammation. Journal of Experimental Medicine, 2014, 211(12): 2397-2410. DOI:10.1084/jem.20140625 |
[32] | Qin N, Zheng BW, Yao J, Guo LH, Zuo J, Wu LJ, Zhou JW, Liu L, Guo J, Ni SJ, Li A, Zhu YX, Liang WF, Xiao YH, Ehrlich SD, Li LJ. Influence of h7n9 virus infection and associated treatment on human gut microbiota. Scientific Reports, 2015, 5: 14771. DOI:10.1038/srep14771 |
[33] | Deriu E, Boxx GM, He XS, Pan C, Benavidez SD, Cen LJ, Rozengurt N, Shi WY, Cheng GH. Influenza virus affects intestinal microbiota and secondary Salmonella infection in the gut through type I interferons. PLoS Pathogens, 2016, 12(5): e1005572. DOI:10.1371/journal.ppat.1005572 |
[34] | Chen CJ, Wu GH, Kuo RL, Shih SR. Role of the intestinal microbiota in the immunomodulation of influenza virus infection. Microbes and Infection, 2017, 19(12): 570-579. DOI:10.1016/j.micinf.2017.09.002 |
[35] | Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, Iwasaki A. Microbiota regulates immune defense against respiratory tract influenza a virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(13): 5354-5359. DOI:10.1073/pnas.1019378108 |
[36] | Youn HN, Lee DH, Lee YN, Park JK, Yuk SS, Yang SY, Lee HJ, Woo SH, Kim HM, Lee JB, Park SY, Choi IS, Song CS. Intranasal administration of live Lactobacillus species facilitates protection against influenza virus infection in mice. Antiviral Research, 2012, 93(1): 138-143. DOI:10.1016/j.antiviral.2011.11.004 |
[37] | Hori T, Kiyoshima J, Shida K, Yasui H. Effect of intranasal administration of Lactobacillus casei shirota on influenza virus infection of upper respiratory tract in mice. Clinical and Diagnostic Laboratory Immunology, 2001, 8(3): 593-597. DOI:10.1128/CDLI.8.3.593-597.2001 |
[38] | Steed AL, Christophi GP, Kaiko GE, Sun LL, Goodwin VM, Jain U, Esaulova E, Artyomov MN, Morales DJ, Holtzman MJ, Boon ACM, Lenschow DJ, Stappenbeck TS. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science, 2017, 357(6350): 598-502. |
[39] | Nowak P, Troseid M, Avershina E, Barqasho B, Neogi U, Holm K, Hov JR, Noyan K, Vesterbacka J, Sv?rd J, Rudi K, S?nnerborg A. Gut microbiota diversity predicts immune status in hiv-1 infection. AIDS, 2015, 29(18): 2409-2418. DOI:10.1097/QAD.0000000000000869 |
[40] | Lu W, Feng YQ, Jing FH, Han Y, Lyu N, Liu F, Li J, Song XJ, Xie J, Qiu ZF, Zhu T, Routy B, Routy JP, Li TS, Zhu BL. Association between gut microbiota and CD4 recovery in HIV-1 infected patients. Frontiers in Microbiology, 2018, 9: 1451. DOI:10.3389/fmicb.2018.01451 |
[41] | Tuddenham SA, Koay WLA, Zhao N, White JR, Ghanem KG, Sears CL, HIV Microbiome Re-analysis Consortium. The impact of human immunodeficiency virus infection on gut microbiota α-diversity: an individual-level meta-analysis. Clinical Infectious Diseases, 2020, 70(4): 615-627. |
[42] | Gootenberg DB, Paer JM, Luevano JM, Kwon DS. HIV-associated changes in the enteric microbial community: Potential role in loss of homeostasis and development of systemic inflammation. Current Opinion in Infectious Diseases, 2017, 30(1): 31-43. |
[43] | Paquin-Proulx D, Ching C, Vujkovic-Cvijin I, Fadrosh D, Loh L, Huang Y, Somsouk M, Lynch SV, Hunt PW, Nixon DF, SenGupta D. Bacteroides are associated with galt inkt cell function and reduction of microbial translocation in hiv-1 infection. Mucosal Immunology, 2017, 10(1): 69-78. |
[44] | Cunningham-Rundles S, Ahrné S, Johann-Liang R, Abuav R, Dunn-Navarra AM, Grassey C, Bengmark S, Cervia JS. Effect of probiotic bacteria on microbial host defense, growth, and immune function in human immunodeficiency virus type-1 infection. Nutrients, 2011, 3(12): 1042-1070. |
[45] | Trois L, Cardoso EM, Miura E. Use of probiotics in HIV-infected children: a randomized double-blind controlled study. Journal of Tropical Pediatrics, 2008, 54(1): 19-24. |
[46] | d'Ettorre G, Ceccarelli G, Giustini N, Serafino S, Calantone N, de Girolamo G, Bianchi L, Bellelli V, Ascoli-Bartoli T, Marcellini S, Turriziani O, Brenchley JM, Vullo V. Probiotics reduce inflammation in antiretroviral treated, HIV-infected individuals: results of the "probio-HIV" clinical trial. PLoS One, 2015, 10(9): e0137200. |
[47] | Hu JM, Protzer U, Siddiqui A. Revisiting hepatitis b virus: challenges of curative therapies. Journal of Virology, 2019, 93(20): e01032-19. |
[48] | Ma ZY, Zhang EJ, Yang DL, Lu MJ. Contribution of toll-like receptors to the control of hepatitis b virus infection by initiating antiviral innate responses and promoting specific adaptive immune responses. Cellular & Molecular Immunology, 2015, 12(3): 273-282. |
[49] | Seki E, Schnabl B. Role of innate immunity and the microbiota in liver fibrosis: Crosstalk between the liver and gut. The Journal of Physiology, 2012, 593(3): 447-458. |
[50] | Borrelli A, Bonelli P, Tuccillo FM, Goldfine ID, Evans JL, Buonaguro FM, Mancini A. Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: current and innovative therapeutic approaches. Redox Biology, 2018, 15: 467-479. |
[51] | Gao K, Liu L, Wang HF. Advances in immunomodulation of microbial unmethylated CpG DNA on animal intestinal tract-A review. Acta Microbiologica Sinica, 2015, 55(5): 543-550. (in Chinese) 高侃, 刘丽, 汪海峰. 微生物未甲基化CpG DNA对动物肠道的免疫调节作用. 微生物学报, 2015, 55(5): 543-550. |
[52] | Lu HF, Wu ZW, Xu W, Yang JZ, Chen YB, Li LJ. Intestinal microbiota was assessed in cirrhotic patients with hepatitis B virus infection. Intestinal microbiota of HBV cirrhotic patients. Microbial Ecology, 2011, 61(3): 693-703. |
[53] | Wang J, Wang Y, Zhang X, Liu JQ, Zhang QP, Zhao Y, Peng JH, Feng Q, Dai JY, Sun SJ, Zhao YF, Zhao LP, Zhang YY, Hu YY, Zhang MH. Gut microbial dysbiosis is associated with altered hepatic functions and serum metabolites in chronic hepatitis B patients. Frontiers in Microbiology, 2017, 8: 2222. |
[54] | Chou HH, Chien WH, Wu LL, Cheng CH, Chung CH, Horng JH, Ni YH, Tseng HT, Wu DF, Lu XM, Wang HY, Chen PJ, Chen DS. Age-related immune clearance of hepatitis B virus infection requires the establishment of gut microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(7): 2175-2180. |
[55] | Zilberman-Schapira G, Zmora N, Itav S, Bashiardes S, Elinav H, Elinav E. The gut microbiome in human immunodeficiency virus infection. BMC Medicine, 2016, 14: 83. DOI:10.1186/s12916-016-0625-3 |
[56] | Antunes KH, Fachi JL, de Paula R, Da Silva EF, Pral LP, Dos Santos Aá, Dias GBM, Vargas JE, Puga R, Mayer FQ, Maito F, Zárate-Bladés CR, Ajami NJ, Sant'Ana MR, Candreva T, Rodrigues HG, Schmiele M, Silva Clerici MTP, Proen?a-Modena JL, Vieira AT, Mackay CR, Mansur D, Caballero MT, Marzec J, Li JY, Wang XT, Bell D, Polack FP, Kleeberger SR, Stein RT, Vinolo MAR, de Souza APD. Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nature Communications, 2019, 10(1): 3273. |
[57] | Hashemi Z, Fouhse J, Im HS, Chan CB, Willing BP. Dietary pea fiber supplementation improves glycemia and induces changes in the composition of gut microbiota, serum short chain fatty acid profile and expression of mucins in glucose intolerant rats. Nutrients, 2017, 9(11): 1236. |
[58] | Sagheddu V, Patrone V, Miragoli F, Puglisi E, Morelli L. Infant early gut colonization by Lachnospiraceae: high frequency of Ruminococcus gnavus. Frontiers in Pediatrics, 2016, 4: 57. |
[59] | Slon Campos JL, Mongkolsapaya J, Screaton GR. The immune response against flaviviruses. Nature Immunology, 2018, 19(11): 1189-1198. |
[60] | Seligman SJ, Gould EA. Live flavivirus vaccines: reasons for caution. The Lancet, 2004, 363(9426): 2073-2075. |
[61] | Thackray LB, Handley SA, Gorman MJ, Poddar S, Bagadia P, Brise?o CG, Theisen DJ, Tan Q, Hykes Jr BL, Lin H, Lucas TM, Desai C, Gordon JI, Murphy KM, Virgin HW, Diamond MS. Oral antibiotic treatment of mice exacerbates the disease severity of multiple flavivirus infections. Cell Reports, 2018, 22(13): 3440-3453.e6. |