周雪雁1,2, 李琼毅1,2, 丁功涛1, 诺茹·伊扎·诺丁3
1. 西北民族大学生物医学研究中心, 甘肃 兰州 730030;
2. 西北民族大学生命科学与工程学院, 甘肃 兰州 730124;
3. 马来西亚标准与工业研究所工业生物技术研究中心, 雪兰莪州 40700, 马来西亚
收稿日期:2019-08-15;修回日期:2019-10-28;网络出版日期:2019-11-27
基金项目:科技部援助项目(KY201501005);西北民族大学引进人才科研启动项目(xbmuyjrc 201912);中央高校基本科研业务费项目(31920190022)
*通信作者:周雪雁, Tel:+86-931-4512428-0;E-mail:zhouxueyan2004@sina.com.
摘要:鸡的胃肠道具有复杂的微生物菌群,该微生物菌群与宿主的肠道和整体健康密切相关,为了全面揭示鸡肠道微生物菌群的组成及其功能,本文对鸡肠道微生物菌群的建立发育、各肠段群落的分布及其生理学意义进行综述,从而为鸡肠道功能菌株的分离及有效利用,合理调控微生物菌群-宿主相互作用,提高饲料转化率和改善肠道健康提供理论依据。
关键词:肠道微生物菌群建立发育空间分布生理学意义
Establishment, distribution and physiological significance of the intestinal microbiota in chicken
Zhou Xueyan1,2, Li Qiongyi1,2, Ding Gongtao1, Nurul Izza Nordin3
1. Biomedical Research Centre, Northwest Minzu University, Lanzhou 730030, Gansu Province, China;
2. College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730124, Gansu Province, China;
3. Industrial Biotechnology Research Centre, Shah Alam, Selangor, 40700 Malaysia
Received: 15 August 2019; Revised: 28 October 2019; Published online: 27 November 2019
*Corresponding author: Xueyan Zhou, Tel:+86-931-4512428-0;E-mail:zhouxueyan2004@sina.com.
Foundation item: Supported by Ministry of Science and Technology Assistance Program (xbmuyjrc 201912), by the Talent Introduction Project in Northwest Minzu University (A13140/Z19059) and by the Central University Special Fund Basic Scientific Research and Operating Expenses (31920190022)
Abstract: The chicken gastrointestinal tract (GIT) harbors a complex microbial community. The intestinal microbiota is closely related to both the intestinal and overall health of the host. In order to get insights into the composition and function of chicken gut microbiota (intestinal microbiome) we provide an overview of the chicken gastrointestinal microbiota by focusing on the establishment and development, spatial distribution in all intestinal compartments and physiological significance. We foresee advances in strategies to isolate and effectively utilize the functional bacteria in chicken intestinal tract and reasonably manage/modulate the intestinal microbe-host interactions to enhance feed efficiency and improve gut health.
Keywords: intestinal microbiotaestablishment and developmentspatial distributionphysiological significance
鸡的肠道栖居着一个复杂而动态的微生物群落,这个微生物群落中细菌类群占主导[1]。成年鸡的肠道正常土著菌群在高级分类水平上和哺乳动物非常相似,主要为厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes)[2],但在基因序列水平上,每个物种都有超过80%的基因是独一无二的,鸡和人、猪只有很小一部分(约0.5%)基因共享,鸡和猪共享的肠道微生物基因(约0.8%)比鸡和人的(约10%)少[3]。鸡的肠道菌群在嗉囊(Crop)、肌胃(Gizzard)、十二指肠(Duodenum)、空肠(Jejunum)、回肠(Ileum)、盲肠(Cecum)和直肠(Colorectum)等肠道主要区段[4]的分布不完全相同[3]。鸡肠道微生物菌群对宿主健康和生产性能具有重要的生理学意义[5],主要表现在宿主营养吸收[6]、免疫系统发育调节、免疫屏障[7]和解毒[8]等方面的作用。
1 鸡肠道微生物菌群的建立和发育 孵化早期是鸡肠道微生物菌群建立的关键时期。鸡从蛋中孵化,假定蛋内部是无菌的,寄居在蛋壳上的微生物群落可能充当其肠道微生物的接种源,另外饲喂饲料中和环境中的微生物是孵化后雏鸡主要的肠道微生物来源[9]。刚孵出小鸡的盲肠,能够分离出粪链球菌(Fecal streptococci)、梭状芽胞杆菌(Clostridia)、肠杆菌(Enterobacteria)和片球菌(Pediococci),偶尔也有铜绿假单胞菌(Pseudomonas aeruginosa),尤其是链球菌(Streptococcus)和肠杆菌(Enterobacterium)首先在盲肠中被检测到,然后在24 h之内整个肠道都可以被检测到[10-11]。刚孵出小鸡的盲肠分离不到乳酸杆菌(Lactobacilli),然而乳酸杆菌可以在孵出后1 d或饲喂后4 h鸡嗉囊和盲肠中定植,24 h之内在十二指肠、回肠、盲肠中立足[12]。孵出后第3天,在胃肠道的所有部分能够分离到乳酸杆菌、链球菌、肠球菌(Enterococcus)和大肠杆菌(Escherichia coli),随后链球菌和肠球菌丰度似乎只在小肠中慢慢下降,而在盲肠中相对稳定[10]。乳酸杆菌是2周龄肉仔鸡十二指肠、空肠、回肠的优势细菌(105–108 CFU/g内容物)。双歧杆菌在幼龄仔鸡中不能分离到但是在4周龄鸡可以分离到(培养法)[13]。因此鸡肠道内早期微生物菌群经历着其多样性和丰度的变化,以培养为基础[13]和不依赖于培养[14]的研究都表明了这一点,这种改变可能对宿主表型有终生影响。
鸡肠道微生物菌群结构组成随着其日龄增长而发生改变。研究发现,肉仔鸡十二指肠和小肠的典型微生物菌群似乎在第一个2周龄之内就建立了,但菌群却需要花费更长的时间来发育,特别是双歧杆菌(Bifidobacterium)和拟杆菌(Bacteroides)。2–6周龄鸡肠道微生物厌氧菌中,乳酸杆菌是小肠中唯一普遍存在的微生物类群,含量超过104 cfu/g内容物。梭状芽胞杆菌(Clostridia)的含量通常是102–104 CFU/g内容物,样本中偶尔会分离到魏氏梭状芽胞杆菌(Clostridium welchii)。盲肠中厌氧的链球菌(消化链球菌属)在2周时占优势,但以后逐渐下降,6周半时这些微生物只占整个菌群的一小部分,许多革兰阴性非芽胞厌氧菌只出现在4–6周[13]。商业化饲养的生长期肉鸡肠道细菌群落有着时空变化,随着鸡的日龄增加其肠道优势菌群变得越来越复杂,在肠道的每一个区段都有独特的DGGE (Denaturing gradient gel electrophoresis)条带谱[14]。3日龄和7日龄、14–28日龄和49日龄盲肠菌群出现从一个过渡类群演替到另一个更复杂的类群的特征;7–21日龄和21–28日龄回肠的菌群结构稳定,但3日龄和49日龄回肠的菌群结构各自非常独特[15]。
2 鸡不同胃肠段菌群的空间分布 鸡的每个胃肠道段都具有不同的代谢功能,从而形成各自的微生物群落(表 1),随着鸡的不断成熟,其肠道每一个区段都发展它自己独特的菌群结构。培养法和非培养法得到的鸡肠道微生物菌群组成基本一致,种类和数量上会有轻微偏差,可能是由于一些严格厌氧菌很难在体外成功培养所导致。相比之下,非培养法有利于更为全面地了解鸡肠道微生物菌群[16]。鸡整个肠道微生物菌群中厚壁菌门、拟杆菌门和变形杆菌门(Proteobacteria)是最主要的门,占到90%以上,有117–288个细菌属,最主要的属是梭菌属(Clostridium)、瘤胃球菌属(Ruminococcus)、拟杆菌属(Bacteroides)、肠球菌(Enterococcus)和乳酸菌(Lactobacillus)[17-18]。16S rRNA基因序列水平显示成年肉鸡的整个肠道其微生物菌群主要由革兰阳性菌组成,乳酸菌在前段肠道(十二指肠、空肠和回肠)中占优势(> 35%),在嗉囊中其多样性最高,其中以嗜酸乳杆菌(Lactobacillus acidophilus)和唾液乳杆菌(Lactobacillus salivarius)为优势种。盲肠中主要以梭状芽胞杆菌(Clostridia)和拟杆菌属(Bacteroides)为主(约40%),其他较丰富的是粪杆菌(Faecalibacterium prausnitzii) (14%)、大肠杆菌(11%)、乳酸菌(7%)和瘤胃球菌(Ruminococcus) (6%)[18-19]。在肠道菌的数量上,前段肠道(十二指肠、空肠、回肠)平均含量约为108–109 CFU/g内容物,后段肠道(盲肠、直肠)平均含量约为1010–1011 CFU/g内容物[3]。
嗉囊中的细菌主要是革兰阳性兼性厌氧菌,特别是乳酸杆菌大多属于嗜酸乳杆菌、唾液乳杆菌和鸟乳杆菌(Lactobacillus aviarius)[20]。肉鸡嗉囊内容物分离的过路菌有大肠杆菌、臭鼻克雷伯菌(Klebsiella ozaenae)、肺炎克雷伯菌(Klebsiella pneumoniae)、缓慢葡萄球菌(Staphylococcus lentus)、滕黄微球菌(Micrococcus luteus)、产气肠杆菌(Enteroaerogen)、绿脓假单胞菌(Pseudomonas aeruginosa)、优杆菌(Eubacterium)和八叠球菌(Sarcina)。乳酸杆菌、肠道杆菌、革兰阳性球菌和肠球菌不仅能从嗉囊内容物中分离到,而且从嗉囊粘膜中也能分离到[19]。嗉囊中乳酸杆菌的组成在鸡孵出后1–7 d经历快速变化,14 d之后似乎不再改变,通常最容易被检测到的是唾液乳杆菌(Lactobacillus salivarius)、酵母菌、罗伊氏乳杆菌(Lactobacillus reuteri)和嗜酸乳杆菌,也能发现卷曲乳杆菌(Lactobacillus crispatus)、约氏乳杆菌(Lactobacillus johnsonii)、母鸡乳杆菌(Lactobacillus gallinarum)及嗜酸乳杆菌群的一些种。乳酸杆菌一些种的组成在鸡的生命周期内会改变,比如嗜酸乳杆菌、唾液乳杆菌,似乎是逐渐出现,而罗伊氏乳杆菌、约氏乳杆菌、卷曲乳杆菌、鸡乳杆菌和食淀粉乳杆菌(Lactobacillus starch)始终可以被检测到[19]。双歧杆菌也可以从肉仔鸡[21]和母鸡[22]的嗉囊中分离到。
肌胃由于其低pH,不仅被认为是肠道的消化段也被看作是阻止细菌进入远端肠道的障碍,肌胃中包含着占优势的乳酸杆菌并伴有肠球菌、乳糖阴性肠道杆菌和大肠型细菌。其中,在肉鸡肌胃粘膜和消化物中发现有相当多数量的乳酸杆菌主要为鸟乳杆菌和唾液乳杆菌[19]。在饲喂颗粒日粮相对于粉状日粮的肉鸡肌胃中厌氧菌和大肠杆菌群数量较高,而乳酸菌没有改变[23]。
十二指肠的细菌密度较低,是由于其通过时间短,低pH,被胰腺和胆分泌物作用和稀释,兼性厌氧菌群(链球菌、葡萄球菌、乳酸杆菌和大肠杆菌)构成了十二指肠的优势菌群[23]。在开始摄入饲料后9–13 d的小鸡十二指肠和中段小肠食糜的细菌组成似乎是稳定的,在14日龄鸡十二指肠的梭状芽胞杆菌、链球菌、肠杆菌被乳酸杆菌所代替,在十二指肠的乳酸杆菌相对比例也随着日龄而增加[13, 15]。
鸡的小肠(空肠、回肠)微生物主要是兼性厌氧菌,包括链球菌、乳酸杆菌和大肠杆菌,而严格厌氧菌主要是优杆菌(Eubacteriaceae)、丙酸杆菌(Propionibacterium)、魏氏梭状芽胞杆菌(Clostridium welchii)和其他梭状芽胞杆菌(Clostridium)[24]。在小肠的远端部分,消化酶活性降低,胆汁酸解离使得环境更适宜于细菌生长。利用细菌计数的方法,回肠细菌密度从孵化后第1天的108 CFU/g内容物增加到孵化后3 d的109 CFU/g,而且在之后的30 d保持相对稳定[22]。鸡在3日龄时回肠和盲肠菌群组成大不相同[14]。在以玉米-大豆为基础日粮的成熟肉仔鸡回肠中细菌近70% (16S rRNA基因序列)是乳酸杆菌,剩余的大多数是梭菌(Clostridiaceae) (11%)、链球菌(6.5%)和肠球菌(6.5%)[15]。在空肠的乳酸杆菌相对比例也随着日龄而增加,但在回肠的相对比例不增加[13, 15]。从小肠中分离到的肠球菌是粪肠球菌(Enterococcus faecalis)和屎肠球菌(Enterococcus faecium)[13],梭状芽胞杆菌的含量通常在102–104 CFU/g内容物,只是偶尔会分离到产气荚膜梭菌[13, 25]。
在鸡的胃肠道中细菌数量和种类最高的位置是盲肠(1010–1011 CFU/g内容物)[13, 25]。在鸡的一生中盲肠菌群经历不断的演替和置换[26]。在开始的14日龄期间,盲肠菌群是回肠菌群的一部分,在此之后,盲肠和回肠有明显不同的菌群组成[15, 27]。早期盲肠微生物菌群的复杂性是通过菌群培养获得的,14日龄肉鸡盲肠细菌由严格厌氧菌组成,包括革兰阳性厌氧球菌(Anaerobic Gram-positive cocci)、优杆菌属(Eubacterium)、梭状芽胞杆菌属(Clostridium)、吉米菌属(Gemmiger)、梭形杆菌属(Fusobacterium)和拟杆菌属(Bacteriodes)几乎构成了盲肠的全部微生物菌群[23]。5周龄肉鸡盲肠微生物菌群的77%是由严格厌氧菌组成,主要有革兰阴性的多形性球菌(Pleomorphic cocci) (5.2%)、消化链球菌属(Peptostreptococcus) (1.5%)、革兰阳性杆菌(Gram-positive rods) [36.1%的疮疱丙酸杆菌(Propionibacterium acnes)和优杆菌(Eubacterium sp.)]、革兰阴性杆菌[18.6%的梭状类杆菌(Bacteroides clostridiiformis)]、巨单胞类杆菌(B. hypermegas)和脆弱类杆菌(B. fragilis)和芽胞杆菌[15.7%梭状芽胞杆菌(Clostridium sp.)],两种类型的兼性厌氧菌(革兰阳性球菌和大肠杆菌)构成了剩余17.5%的菌群[28]。鸡盲肠微生物组中存在广泛的微生物及功能多样性,鸡盲肠微生物组中有近乎一半的基因代表未知的物种,存在大量的多糖和寡糖降解酶编码基因[29]。肉鸡盲肠内容物及盲肠粘膜菌群有大约89% (16S rRNA基因序列)为4个系统发育群[柔嫩梭菌(Clostridium leptum)、鼠胞菌属(Sporomusa sp.)、拟球梭菌(Clostridium coccoides)、肠道革兰阴性菌(Enterics)],而拟杆菌群(Bacteroides group)、婴儿双歧杆菌亚群(Bifidobacterium infantis subgroup)和假单胞菌(Pseudomonas sp.)的成员,每一种只占总数的不到2%[30]。49日龄肉鸡盲肠微生物中梭菌科(Clostridiaceae-related) (16S rRNA文库序列)相关细菌最丰富(65%),其次是梭形杆菌(Fusobacterium) (14%)、乳酸杆菌(Lactobacillus) (8%)和拟杆菌(Bacteroides) (5%)[15]。鸡盲肠菌群中还有产甲烷古菌,这些古细菌对移除发酵产生过量的氢离子起重要作用[31]。鸡的盲肠中也会寄居着某些病原性和传染性细菌如空肠弯曲杆菌[32]。
粪的微生物菌群组成是由来自胃肠道不同分隔段的微生物混合组成。在粪中有四个占优势的微生物系统群,其中两个系统群(Clostridiaceae、Unclassified Clostridiales)与梭菌有关,另外两个与乳酸菌(Lactobacillus)和大肠杆菌/志贺菌有关[33]。粪样分析可以获得盲肠中大部分微生物的多样性,粪样和盲肠内容物样本共有88.55%的操作分类学单元(OTUs),每一种样本类型的唯一OTUs非常少[34]。鸡的粪样和盲肠内容物微生物菌群组成在性质上类似但数量不同,盲肠内容物能反映鸡的盲肠微生物,而粪样不能[35]。
表 1. 鸡肠道中最常见、最丰富细菌类群(门、目(o)、科(f)、属)的空间分布,不计年龄、饮食和技术的差异 Table 1. Spatial distribution of the most common and abundant bacterial taxa (phylum, order (o.), family (f.), genus) in the gastro-intestinal tract (GIT) of chickens irrespective of age, diet and technique differences
GIT location (per g of content) | Bacterial phyla | Bacteria genera | Techniques used | References |
Crop (108?109 CFU/g) | Firmicutes | Lactobacillus | Culture; 16S rDNA sequencing and cloning | [19-23] |
Actinobacteria | Bifidobacterium | |||
Proteobacteria | Enterobacter | |||
Gizzard (107?108 CFU/g) | Firmicutes | Lactobacillus, Enterococcus | 16S rDNA sequencing and cloning | [19] |
Proteobacteria | Enterobacter | |||
Duodenum | Firmicutes | Lactobacillus, Streptococcus, Staphylococcus | Culture; 16S rDNA sequencing and cloning | [13, 15, 24] |
Proteobacteria | Enterobacter | |||
Jejunum, Ileum (most of the studies are conducted in ileum; 108?109 CFU/g) | Firmicutes | Lactobacillacae (f.) Lactobacillus, Clostridiaceae (f.), Clostridium, Enterococcaceae (f.), Enterococcus, Candidatus Arthomitus, Weisella, Ruminococcus, Eubacterium, Bacillus, Stapylococcaceae (f.), Staphylococcus, Streptococcus, Turicibacter, Methylobacterium | Finger printing: T-RFLP, qPCR, 16S rRNA cloning and sequencing and Next Generation Sequencing | [13, 15, 18, 24-25] |
Bacteroides/ Cytophaga/ Flexibacter/ | Bacteroidaceae (f.), Bacteroidetes, Flavibacterium, Fusobacterium, Bifidobacterium | |||
Protobacteria | Ochrobaterium, Alcaligenes, Escherichia, Campylobacter, Hafnia, Shigella | |||
Actinobacteria/ Cyanobacteria | Corynebacterium | |||
Caeca (1010?1011 CFU/g) | Firmicutes/ (44%?56%) | Clostridium, Lactobacillus, Anaerotruncus, Ruminococcaceae (f) Ruminoccoccus, Faecalibacterium, Lachnospirceae, Bacillus, Streptococcus, Clostridiales (o), Megamonas, Enterococcus, Weisella, Eubacterium, Staphylococcus, Streptococcus | Finger printing: T-RFLP, qPCR, 16S rRNA cloning and sequencing and Next Generation Sequencing | [13, 15, 24-31] |
Bacteroides/ Cytophaga/ Flexibacter/ (23%?46%) | Rikenellaceae (f), Fusobacterium, Bacteroidetes, Alistipes, Bifidobacterium, Flavibacterium, Odoribacter | |||
Proteobacteria (1%?16%) | Ochrobaterium, Alcaligenes, Escherichia, Campylobacter | |||
Actinobacteria | Corynebacterium | |||
Methanogenic Archaea (0.81%) | Methanobrevibacter, Methanobacterium, Methanothermobacter, Methanosphaera, Methanopyrus, Methanothermus, Methanococc | |||
Colorectum/Faeces | Firmicutes | Lactobacillus, Clostridium, Fusobacterium, Lachnospiraceae Ruminococcus, Bacillus, Eubacterium Coprococcus, Blautia | 16S rDNA cloning and sequencing | [34-35] |
Proteobacteria | Escherichia, Shigella |
表选项
3 鸡肠道微生物菌群的生理学意义 鸡肠道微生物菌群参与宿主的饲料消化、免疫调节和生长发育等生理过程[5]。它们在促进宿主营养消化、抑制病原体和肠相关免疫系统相互作用方面发挥着重要作用。很多食物单凭机体自身不能被消化吸收,需要肠道微生物来降解,或合成维生素和其他必需营养元素来帮助消化吸收。非病原性的肠道正常微生物能保护肠道免受有害微生物的侵染,宿主和微生物菌群的共生可调节先天性和获得性免疫系统发育,保护宿主避免感染和免疫紊乱,促进机体的健康,提高其生产力。此外,鸡肠道微生物菌群还能分解药物和毒素[8]。
3.1 对宿主的营养作用 鸡肠道中栖居着大量和复杂的细菌种群,这些菌群通过提高消化酶的代谢功能潜质而有利于宿主对营养素的利用,进而为宿主提供高能代谢物。非培养法技术已经表明肠道微生物菌群远比之前认识到的多样得多。通过给孵化在无菌环境中的小鸡进行营养性添加微生物,可以揭示鸡微生物特定的营养作用。肠道微生物系统与宿主营养利用和发育之间的相互作用非常复杂并依赖于肠道菌群的组成和活动,它能对鸡的生长和健康产生积极或消极的影响[36]。鸡肠道微生物菌群与饲料利用效率有关[37]。也有****认为肠道菌群对快速增长的肉鸡是一个营养上的负担,因为一个活跃的微生物区系组分可能为维持其自身存活需要增加能量而降低营养物质的利用效率。生长在无病原体环境的鸡比常规暴露在细菌和病毒环境下的鸡生长快,而无菌鸡的研究则表明微生物定植降低了总葡萄糖和维生素的吸收[38]。
鸡的肠道微生物只是分解糖类碳水化合物而不分解纤维素[39],然而其他一些禽类如麝雉[40]和鸵鸟[41]拥有发酵纤维素肠道微生物。在鸡[42]和火鸡[43]嗉囊中检测到具有淀粉酶活性的肠道微生物,这些微生物可能发酵淀粉质多糖、非淀粉性多糖和糖,发酵产物给宿主提供少量的能量。鸡盲肠微生物宏基因组中有编码多种发酵通路的基因,导致产生短链脂肪酸(SCFA,Short chain fatty acids),比如编码氢化酶基因,这些酶在肠道微生物菌群中提供主要的氢还原[29]。盲肠微生物菌群在发酵过程和SCFA的生成中发挥着重要作用。肠道微生物发酵的主要产物是SCFA、乳酸和氨,SCFA涉及到宿主和微生物菌群相关的许多活动如抗菌作用、调节胆汁和胰腺的分泌、为上皮细胞繁殖提供能量、粘液产生和基因表达。在体外鸡盲肠微生物菌群比人肠道微生物菌群能产生更高水平的挥发性脂肪酸,鸡盲肠微生物菌群也比人粪样微生物菌群具有更高的多样性[44]。
在鸡肠道中能降解尿酸的微生物比分解糖的微生物更丰富[29]。已经从鸡、火鸡、珍珠鸡、鸭、野鸡和蜂鸟中分离到尿素/尿酸代谢的微生物[13, 45]。尿酸是禽类含氮物代谢的主要产物,通过泄殖腔排泄。鸡盲肠微生物在其尿酸分解代谢中发挥重要作用。孵出后3–6 h的小鸡盲肠细菌就能够在厌氧条件下分解尿酸,随后多种不同类型的盲肠厌氧菌包括消化链球菌属、拟杆菌属、梭状芽胞杆菌属的一些株都具有这种能力[13]。在氮有限的条件下,鸡肠道表现出逆行蠕动将尿酸向上转运到前一点的肠道和盲肠,在那里尿酸被发酵成短链脂肪酸和氨,然后它们被化能微生物合成氨基酸并进一步合成谷氨酰胺被宿主盲肠重吸收[46]。微生物所进行的尿酸代谢过程被认为对宿主保存和节约氮源尤其重要,特别是在以低蛋白为日粮的禽类品种。
3.2 对宿主免疫功能的效应 鸡法氏囊所定植的微生物,可能充当其自身的抗原,诱导细胞因子产生,增强法氏囊B细胞的增殖和成熟[47]。法氏囊B淋巴细胞负担着机体的体液免疫功能,在孵化之后将法氏囊实验性结扎,结果鸡产生的自然抗体水平较低,这意味着法氏囊微生物通过法氏囊这一结构对免疫有系统效应。同样将杀死的细菌抗原灌输到结扎的法氏囊引流管,则实验组鸡比对照组鸡恢复了较高的自然抗体水平[48]。鸡的法氏囊微生物是否在禽类B细胞发育中发挥着一个比哺乳动物更强的作用,还需要进一步确定。
肠道正常微生物定植通过上调许多交叉-支撑蛋白从而降低被病原微生物的入侵和内毒素的吸收,也极大地提高了肠上皮壁的完整性[49]。比如肠道组织产生的黏蛋白是糖基化蛋白,为共生微生物提供营养和附着场所[50-51],鸡黏蛋白而不是人黏蛋白能够缓减弯曲杆菌的毒性,使得它在鸡肠道中担任一个共生的角色[52]。此外,肠道环境中的其他组分也被认为是先天的免疫保护,如肠上皮组织所产生的聚糖和寡糖(如岩藻糖)被认为依赖其多样性和结构特异性来调节肠道微生物菌群[49]。
3.3 促进宿主生长发育 肠道正常菌群和宿主的共生作用可促进机体的健康,提高其生产力,在将来很可能会通过选择优良肠道微生物菌群来选择高产和健康的鸡。已经发现鸡肠道微生物菌群具有解毒作用,能代谢多种霉菌毒素[8],麝雉中已经发现了降解皂苷的细菌[53]。一些植物源的饲料添加剂通过调整鸡肠道微生物菌群结构组成向着健康方向发展而提高其生长性能。用植物源性的苄基异喹啉(Benzylisoquinoline)生物碱(博落回提取物,Macleaya cordata extract)替代抗生素喂养鸡能提高其生长性能,占优势的乳酸菌作用提高,氨基酸、维生素、次级胆汁酸生物合成途径上调[3]。从鉴定菌体蛋白的分类水平看,在补充无机磷(P)和微生物植酸酶(MP, Microbial phytase)的情况下,微生物菌群生长旺盛,而在不补充P和MP的情况下,微生物菌群则处于低迷状态,但优杆菌科(Eubacteriaceae)和乳杆菌科(Lactobacillaceae)含量较高[54]。这些研究表明一些植物源或微生物酶类的添加剂可以替代抗生素或其他化学药物通过调整肠道菌群结构而提高宿主生长性能。
尽管鸡肠道微生物在宿主的营养、免疫和生长发育方面发挥作用,然而细菌似乎在这些作用的每一个领域都会产生正面和负面影响。肠道菌群对健康有许多益处,但肠道菌群也表现出一些不利的方面,例如,产生营养物质但降低其吸收,它们和宿主竞争肠道内营养,它们可能分泌有毒的和抗营养化合物,一些微生物表达了能使植物毒素对宿主更具毒性的酶,这些酶能够剪切配糖体(苷类)和硫配糖体(芥子油甙)释放毒性化合物,然后这些毒性化合物变得更容易被宿主吸收,致使宿主吸收了更大量的硫配糖体,增加了日粮毒素的毒性[55]。不利的肠道菌群还会在肠道中诱发持续的炎症反应,刺激上皮细胞的快速更新而使鸡的生长性能下降,诱导有助的但耗费能量的免疫反应。因此提高宿主肠道菌群多样性时必须明确涉及该微生物定植的利弊,特别是在个体适应性方面哪一项功能作用是最重要的。
4 讨论和展望 目前缺乏对中国境内地方品种鸡的肠道微生物菌群研究,包括小规模饲养的具有特殊遗传性状的地方品种鸡和濒危品种鸡。宿主和环境因素均会影响鸡的肠道微生物群组成[56],已取得的研究成果主要为规模化养殖肉鸡(Broiler chickens)的肠道微生物菌群结构和功能。中国鸡的地方品种数量庞大,几乎每一个地方品种的鸡都具有其突出的性状,比如抗逆性、低腹脂率、耐低温、耐紫外线、耐低氧、体型或体重大小等,这些特殊性状应该与其肠道微生物组成和功能有关联。中国藏鸡生长在高海拔的藏区,为蛋肉兼用型鸡品种,耐低氧耐低温耐紫外线,并具有低腹脂率、抗病性强的优良特性,将散养的藏鸡与内地规模化饲养的罗曼褐壳蛋鸡、大恒肉鸡的盲肠肠道微生物菌群相比较,结果显示藏鸡盲肠微生物中具有较丰富的Christensenellaceae、Subdoligranulum、Spirochaeta、Treponema,而在罗曼蛋鸡和大恒肉鸡中具有较丰富的Phascolarctobacterium、Faecalibacterium、Megamonas和Desulfovibrio,这种差异可能源于宿主品种、生活地域和饲养模式环境等[57]。因此,未来可加强对中国地方品种鸡肠道微生物菌群的调查研究,以期能够丰富和完善各品种鸡肠道微生物菌群组成及功能信息,另外也可扩大至其他特殊禽类比如食肉的秃鹫、鹰、隼等,其肠道是否具有较为丰富的降解肌肉蛋白的微生物类群,就像大熊猫肠道既具有典型的食肉动物肠道微生物菌群,还有低水平分解纤维素微生物一样[58],需要进一步验证。
对鸡肠道微生物组成、活动信息以及作用的研究应旨在控制外源微生物对肠道菌群组成的影响,开发可调控肠道微生物菌群的饲养策略,鸡的肠道微生物菌群研究应借鉴人的肠道微生物菌群研究方法,其研究目的应与鸡的饲养策略相结合。由于鸡群体和人群体的发病类型有所不同,人类群体中除了病原体感染还会发生大量的代谢疾病,人的肠道菌群研究集中在病理(如炎症性肠病、前糖尿病等)状态下其结构组成变化及功能失调[59-60],以期能够通过调整肠道微生物菌群来使病人恢复健康,而鸡的病原微生物感染频发,其肠道微生物研究集中在常见病原菌感染对肠道菌群造成的影响,以期能够更好地控制病原微生物。弯曲杆菌(Campylobacter jejuni)定植肉鸡盲肠,会导致其中乳酸菌科和梭菌群中XIVa的相对丰度迅速降低,尤其是拉氏藻科(Lachnospiraceae)和瘤胃球菌科(Ruminococcaceae)的特定成员[61]。产气荚膜梭菌(Clostridium perfringens)感染肉鸡,其空肠和回肠中的微生物在属水平上有24个类群(如亚硝基单胞菌Nitrosamonas、Coxiella、Ruegeria、Thauera等)明显丰富,而加氏乳杆菌(Lactobacillus gasseri)的水平降低[62]。减毒的伤寒沙门氏菌(Salmonella enterica Serovar Typhimurium)能通过增加Alistipes、未定名的Lactobacillus和Christensenellaceae、Lactobacillus reuteri而改变肠道微生物菌群来加速清除沙门氏菌[63]。这些研究表明病原微生物感染会影响鸡肠道正常菌群结构组成,饲养过程应严格控制环境质量从而维持鸡的正常菌群平衡。然而,这些研究成果还处于起步阶段,鸡肠道微生物菌群的研究方法仍依赖于传统的培养法和基于16S rRNA基因序列的测序法[16],而人的肠道微生物菌群研究已经采用了宏基因组、转录组、代谢组和蛋白质组的多组学方法[60]。因此,鸡肠道微生物的研究不应该只是去知道微生物的物种名称和分类,而是要理解微生物之间和微生物与宿主之间复杂多变的生态关系和演化关系,利用多组学方法,结合其他学科如生态学、微生物学、生物医学、计算机生物学、免疫学和生理学等跨领域的合作,才有可能阐明鸡“健康”肠道微生物菌群的功能和意义,才会有助于我们进一步调控肠道菌群和找到恰当的干预措施[64]。
References
[1] | Apajalahti J, Kettunen A, Graham H. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World's Poultry Science Journal, 2004, 60(2): 223-232. DOI:10.1079/WPS20040017 |
[2] | Oakley BB, Lillehoj HS, Kogut MH, Kim WK, Maurer JJ, Pedroso A, Lee MD, Collett SR, Johnson TJ, Cox NA. The chicken gastrointestinal microbiome. FEMS Microbiology Letters, 2014, 360(2): 100-112. DOI:10.1111/1574-6968.12608 |
[3] | Huang P, Zhang Y, Xiao KP, Jiang F, Wang HC, Tang DZ, Liu D, Liu B, Liu YS, He X, Liu H, Liu XB, Qing ZX, Liu CL, Huang JL, Ren YW, Yun L, Yin LJ, Lin Q, Zeng C, Su XG, Yuan JY, Lin L, Hu NX, Cao HL, Huang SW, Guo YM, Fan W, Zeng JG. The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. Microbiome, 2018, 6(1): 211. DOI:10.1186/s40168-018-0590-5 |
[4] | Wienemann T, Schmitt-Wagner D, Meuser K, Segelbacher G, Schink B, Brune A, Berthold P. The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds. Systematic and Applied Microbiology, 2011, 34(7): 542-551. DOI:10.1016/j.syapm.2011.06.003 |
[5] | Stanley D, Hughes RJ, Moore RJ. Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Applied Microbiology and Biotechnology, 2014, 98(10): 4301-4310. DOI:10.1007/s00253-014-5646-2 |
[6] | Mead GC. Microbes of the avian cecum: types present and substrates utilized. Part A: Ecological Genetics and Physiology, Journal of Experimental Zoology, 1989, 252(S3): 48-54. |
[7] | Brisbin JT, Gong J, Sharif S. Interactions between commensal bacteria and the gut-associated immune system of the chicken. Animal Health Research Reviews, 2008, 9(1): 101-110. DOI:10.1017/S146625230800145X |
[8] | Young JC, Zhou T, Yu H, Zhu HH, Gong JH. Degradation of trichothecene mycotoxins by chicken intestinal microbes. Food and Chemical Toxicology, 2007, 45(1): 136-143. DOI:10.1016/j.fct.2006.07.028 |
[9] | Ruiz-de-Casta?eda R, Vela AI, Lobato E, Briones V, Moreno J. Bacterial loads on eggshells of the pied flycatcher: environmental and maternal factors. The Condor, 2011, 113(1): 200-208. DOI:10.1525/cond.2011.100035 |
[10] | Roto SM, Kwon YM, Ricke SC. Applications of in ovo technique for the optimal development of the gastrointestinal tract and the potential influence on the establishment of its microbiome in poultry. Frontiers in Veterinary Science, 2016, 3: 63. |
[11] | Barnes EM, Impey CS, Cooper DM. Manipulation of the crop and intestinal flora of the newly hatched chick. The American Journal of Clinical Nutrition, 1980, 33(11): 2426-2433. DOI:10.1093/ajcn/33.11.2426 |
[12] | Thomas M, Wongkuna S, Ghimire S, Kumar R, Antony L, Doerner KC, Singery A, Nelson E, Woyengo T, Chankhamhaengdecha S, Janvilisri T, Scaria J. Gut microbial dynamics during conventionalization of germfree chicken. mSphere, 2019, 4(2): e00035-19. |
[13] | Barnes EM, Mead GC, Barnuml DA, Harry EG. The intestinal flora of the chicken in the period 2 to 6 weeks of age, with particular reference to the anaerobic bacteria. British Poultry Science, 1972, 13(3): 311-326. DOI:10.1080/00071667208415953 |
[14] | van der Wielen PWJJ, Keuzenkamp DA, Lipman LJA, van Knapen F, Biesterveld S. Spatial and temporal variation of the intestinal bacterial community in commercially raised broiler chickens during growth. Microbial Ecology, 2002, 44(3): 286-293. DOI:10.1007/s00248-002-2015-y |
[15] | Lu JR, Idris U, Harmon B, Hofacre C, Maurer JJ, Lee MD. Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Applied and Environmental Microbiology, 2003, 69(11): 6816-6824. DOI:10.1128/AEM.69.11.6816-6824.2003 |
[16] | Shang Y, Kumar S, Oakley B, Kim WK. Chicken gut microbiota: importance and detection technology. Frontiers in Veterinary Science, 2018, 5: 254. DOI:10.3389/fvets.2018.00254 |
[17] | Wei S, Morrison M, Yu Z. Bacterial census of poultry intestinal microbiome. Poultry Science, 2013, 92(3): 671-683. DOI:10.3382/ps.2012-02822 |
[18] | Xiao YP, Xiang Y, Zhou WD, Chen JG, Li KF, Yang H. Microbial community mapping in intestinal tract of broiler chicken. Poultry Science, 2017, 96(5): 1387-1393. DOI:10.3382/ps/pew372 |
[19] | Gong JH, Si WD, Forster RJ, Huang RL, Yu H, Yin YL, Yang CB, Han YM. 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiology Ecology, 2007, 59(1): 147-157. DOI:10.1111/j.1574-6941.2006.00193.x |
[20] | Guan LL, Hagen KE, Tannock GW, Korver DR, Fasenko GM, Allison GE. Detection and identification of Lactobacillus species in crops of broilers of different ages by using PCR-denaturing gradient gel electrophoresis and amplified ribosomal DNA restriction analysis. Applied and Environmental Microbiology, 2003, 69(11): 6750-6757. DOI:10.1128/AEM.69.11.6750-6757.2003 |
[21] | Hinton Jr A, Buhr RJ, Ingram KD. Physical, chemical, and microbiological changes in the crop of broiler chickens subjected to incremental feed withdrawal. Poultry Science, 2000, 79(2): 212-218. DOI:10.1093/ps/79.2.212 |
[22] | Petr J, Rada V. Bifidobacteria are obligate inhabitants of the crop of adult laying hens. Journal of Veterinary Medicine, Series B, 2001, 48(3): 227-233. DOI:10.1046/j.1439-0450.2001.00447.x |
[23] | Engberg RM, Hedemann MS, Jensen BB. The influence of grinding and pelleting of feed on the microbial composition and activity in the digestive tract of broiler chickens. British Poultry Science, 2002, 43(4): 569-579. DOI:10.1080/0007166022000004480 |
[24] | Salanitro JP, Blake IG, Muirehead PA, Maglio M, Goodman JR. Bacteria isolated from the duodenum, ileum, and cecum of young chicks. Applied and Environmental Microbiology, 1978, 35(4): 782-790. DOI:10.1128/AEM.35.4.782-790.1978 |
[25] | Bjerrum L, Engberg RM, Leser TD, Jensen BB, Finster K, Pedersen K. Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques. Poultry Science, 2006, 85(7): 1151-1164. DOI:10.1093/ps/85.7.1151 |
[26] | Videnska P, Sedlar K, Lukac M, Faldynova M, Gerzova L, Cejkova D, Sisak F, Rychlik I. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PLoS One, 2014, 9(12): e115142. DOI:10.1371/journal.pone.0115142 |
[27] | Mead GC, Adams BW. Some observations on the caecal micro-flora of the chick during the first two weeks of life. British Poultry Science, 1975, 16(2): 169-176. DOI:10.1080/00071667508416174 |
[28] | Salanitro JP, Blake IG, Muirhead PA. Studies on the cecal microflora of commercial broiler chickens. Applied Microbiology, 1974, 28(3): 439-447. DOI:10.1128/AEM.28.3.439-447.1974 |
[29] | Sergeant MJ, Constantinidou C, Cogan TA, Bedford MR, Penn CW, Pallen MJ. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One, 2014, 9(3): e91941. DOI:10.1371/journal.pone.0091941 |
[30] | Zhu XY, Zhong TY, Pandya Y, Joerger RD. 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Applied and Environmental Microbiology, 2002, 68(1): 124-137. DOI:10.1128/AEM.68.1.124-137.2002 |
[31] | Saengkerdsub S, Anderson RC, Wilkinson HH, Kim WK, Nisbet DJ, Ricke SC. Identification and quantification of methanogenic archaea in adult chicken ceca. Applied and Environmental Microbiology, 2007, 73(1): 353-356. DOI:10.1128/AEM.01931-06 |
[32] | Gencay YE, Birk T, S?rensen MCH, Br?ndsted L. Methods for isolation, purification, and propagation of bacteriophages of Campylobacter jejuni//Butcher J, Stintzi A. Campylobacter jejuni. New York: Humana Press, 2017: 19-28. |
[33] | Sekelja M, Rud I, Knutsen SH, Denstadli V, Westereng B, N?s T, Rudi K. Abrupt temporal fluctuations in the chicken fecal microbiota are explained by its gastrointestinal origin. Applied and Environmental Microbiology, 2012, 78(8): 2941-2948. DOI:10.1128/AEM.05391-11 |
[34] | Stanley D, Geier MS, Chen HL, Hughes RJ, Moore RJ. Comparison of fecal and cecal microbiotas reveals qualitative similarities but quantitative differences. BMC Microbiology, 2015, 15(1): 51. |
[35] | Pauwels J, Taminiau B, Janssens GPJ, de Beenhouwer M, Delhalle L, Daube G, Coopman F. Cecal drop reflects the chickens' cecal microbiome, fecal drop does not. Journal of Microbiological Methods, 2015, 117: 164-170. DOI:10.1016/j.mimet.2015.08.006 |
[36] | Vispo C, Karasov WH. The interaction of avian gut microbes and their host: an elusive symbiosis//Mackie RI, White BA. Gastrointestinal Microbiology. Boston: Springer, 1997: 116-155. |
[37] | Stanley D, Geier MS, Denman SE, Haring VR, Crowley TM, Hughes RJ, Moore RJ. Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. Veterinary microbiology, 2013, 164(1/2): 85-92. |
[38] | Ford DJ, Coates ME. Absorption of glucose and vitamins of the B complex by germ-free and conventional chicks. The Proceedings of the Nutrition Society, 1971, 30(1): 10A-11A. |
[39] | Józefiak D, Rutkowski A, Martin SA. Carbohydrate fermentation in the avian ceca: a review. Animal Feed Science and Technology, 2004, 113(1/4): 1-15. |
[40] | Grajal A, Strahl SD, Parra R, Gloria Dominguez M, Neher A. Foregut fermentation in the hoatzin, a neotropical leaf-eating bird. Science, 1989, 245(4923): 1236-1238. DOI:10.1126/science.245.4923.1236 |
[41] | Matsui H, Kato Y, Chikaraishi T, Moritani M, Ban-Tokuda T, Wakita M. Microbial diversity in ostrich ceca as revealed by 16S ribosomal RNA gene clone library and detection of novel Fibrobacter species. Anaerobe, 2010, 16(2): 83-93. DOI:10.1016/j.anaerobe.2009.07.005 |
[42] | Bolton W. Digestion in the crop of the fowl. British Poultry Science, 1965, 6(2): 97-102. DOI:10.1080/00071666508415561 |
[43] | Pinchasov Y, Noy Y. Early postnatal amylolysis in the gastrointestinal tract of turkey poults Meleagris gallopavo. Comparative Biochemistry and Physiology Part A: Physiology, 1994, 107(1): 221-226. DOI:10.1016/0300-9629(94)90297-6 |
[44] | Lei F, Yin YS, Wang YZ, Deng B, Yu HD, Li LJ, Xiang C, Wang SY, Zhu BL, Wang X. Higher-level production of volatile fatty acids in vitro by chicken gut microbiotas than by human gut microbiotas as determined by functional analyses. Applied and Environmental Microbiology, 2012, 78(16): 5763-5772. DOI:10.1128/AEM.00327-12 |
[45] | Preest MR, Folk DG, Beuchat CA. Decomposition of nitrogenous compounds by intestinal bacteria in hummingbirds. The Auk, 2003, 120(4): 1091-1101. DOI:10.1642/0004-8038(2003)120[1091:DONCBI]2.0.CO;2 |
[46] | Braun EJ, Campbell CE. Uric acid decomposition in the lower gastrointestinal tract. Journal of Experimental Zoology, 1989, 252(S3): 70-74. DOI:10.1002/jez.1402520512 |
[47] | Kimura N, Yoshikane M, Kobayashi A. Microflora of the bursa of Fabricius of chickens. Poultry Science, 1986, 65(9): 1801-1807. DOI:10.3382/ps.0651801 |
[48] | Ekino S, Suginohara K, Urano T, Fujii H, Matsuno K, Kotani M. The bursa of Fabricius: a trapping site for environmental antigens. Immunology, 1985, 55(3): 405-410. |
[49] | Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science, 2001, 291(5505): 881-884. DOI:10.1126/science.291.5505.881 |
[50] | Deplancke B, Gaskins HR. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. The American Journal of Clinical Nutrition, 2001, 73(6): 1131S-1141S. DOI:10.1093/ajcn/73.6.1131S |
[51] | Johansson MEV, Ambort D, Pelaseyed T, Schütte A, Gustafsson JK, Ermund A, Subramani DB, Holmén-Larsson JM, Thomsson KA, Bergstr?m JH, van der Post S, Rodriguez-Pi?eiro AM, Sj?vall H, B?ckstr?m M, Hansson GC. Composition and functional role of the mucus layers in the intestine. Cellular and Molecular Life Sciences, 2011, 68(22): 3635-3641. DOI:10.1007/s00018-011-0822-3 |
[52] | Byrne CM, Clyne M, Bourke B. Campylobacter jejuni adhere to and invade chicken intestinal epithelial cells in vitro. Microbiology, 2007, 153(2): 561-569. DOI:10.1099/mic.0.2006/000711-0 |
[53] | García-Amado MA, Michelangeli F, Gueneau P, Perez ME, Domínguez-Bello MG. Bacterial detoxification of saponins in the crop of the avian foregut fermenter Opisthocomus hoazin. Journal of Animal and Feed Sciences, 2007, 16(S2): 82-85. |
[54] | Tilocca B, Witzig M, Rodehutscord M, Seifert J. Variations of phosphorous accessibility causing changes in microbiome functions in the gastrointestinal tract of chickens. PLoS One, 2016, 11(10): e0164735. DOI:10.1371/journal.pone.0164735 |
[55] | Slominski BA, Campbell LD, Stanger NE. Extent of hydrolysis in the intestinal tract and potential absorption of intact glucosinolates in laying hens. Journal of the Science of Food and Agriculture, 1988, 42(4): 305-314. DOI:10.1002/jsfa.2740420404 |
[56] | Kers JG, Velkers FC, Fischer EAJ, Hermes GDA, Stegeman JA, Smidt H. Host and environmental factors affecting the intestinal microbiota in chickens. Frontiers in Microbiology, 2018, 9: 235. DOI:10.3389/fmicb.2018.00235 |
[57] | Zhou XY, Jiang XS, Yang CW, Ma BC, Lei CW, Xu CW, Zhang AY, Yang X, Xiong Q, Zhang P, Men S, Xiang R, Wang HN. Cecal microbiota of Tibetan Chickens from five geographic regions were determined by 16S rRNA sequencing. MicrobiologyOpen, 2016, 5(5): 753-762. DOI:10.1002/mbo3.367 |
[58] | Yang SZ, Gao X, Meng JH, Zhang AY, Zhou YM, Long M, Li B, Deng WW, Jin L, Zhao SY, Wu DF, He YG, Li CW, Liu SL, Huang Y, Zhang HM, Zou LK. Metagenomic analysis of bacteria, fungi, bacteriophages, and helminths in the gut of giant pandas. Frontiers Microbiology, 2018, 9: 1717. DOI:10.3389/fmicb.2018.01717 |
[59] | Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, Andrews E, Ajami NJ, Bonham KS, Brislawn CJ, Casero D, Courtney H, Gonzalez A, Graeber TG, Hall AB, Lake K, Landers CJ, Mallick H, Plichta DR, Prasad M, Rahnavard G, Sauk J, Shungin D1, Vázquez-Baeza Y, White Ⅲ RA, IBDMDB Investigators, Braun J, Denson LA, Jansson JK, Knight R, Kugathasan S, McGovern DPB, Petrosino JF, Stappenbeck TS, Winter HS, Clish CB, Franzosa EA, Vlamakis H, Xavier RJ, Huttenhower C. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature, 2019, 569(7758): 655-662. DOI:10.1038/s41586-019-1237-9 |
[60] | Zhou WY, Sailani MR, Contrepois K, Zhou YJ, Ahadi S, Leopold SR, Zhang MJ, Rao V, Avina M, Mishra T, Johnson J, Lee-McMullen B, Chen SJ, Metwally AA, Tran TDB, Nguyen H, Zhou X, Albright B, Hong BY, Petersen L, Bautista E, Hanson B, Chen L, Spakowicz D, Bahmani A, Salins D, Leopold B, Ashland M, Dagan-Rosenfeld O, Rego S, Limcaoco P, Colbert E, Allister C, Perelman D, Craig C, Wei E, Chaib H, Hornburg D, Dunn J, Liang L, Rose SMSF, Kukurba K, Piening B, Rost H, Tse D, McLaughlin T, Sodergren E, Weinstock GM, Snyder M. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature, 2019, 569(7758): 663-671. DOI:10.1038/s41586-019-1236-x |
[61] | Connerton PL, Richards PJ, Lafontaine GM, O'Kane PM, Ghaffar N, Cummings NJ, Smith DL, Fish NM, Connerton IF. The effect of the timing of exposure to Campylobacter jejuni on the gut microbiome and inflammatory responses of broiler chickens. Microbiome, 2018, 6(1): 88. DOI:10.1186/s40168-018-0477-5 |
[62] | Zhang BB, Lv ZP, Li Z, Wang WW, Li G, Guo YM. Dietary L-arginine supplementation alleviates the intestinal injury and modulates the gut microbiota in broiler chickens challenged by clostridium perfringens. Frontiers in Microbiology, 2018, 9: 1716. DOI:10.3389/fmicb.2018.01716 |
[63] | Azcarate-Peril MA, Butz N, Cadenas MB, Koci M, Ballou A, Mendoza M, Ali R, Hassan H. An attenuated Salmonella enterica serovar Typhimurium strain and galacto-oligosaccharides accelerate clearance of Salmonella infections in poultry through modifications to the gut microbiome. Applied and Environmental Microbiology, 2018, 84(5): e02526-17. |
[64] | Borda-Molina D, Seifert J, Camarinha-Silva A. Current perspectives of the chicken gastrointestinal tract and its microbiome. Computational and Structural Biotechnology Journal, 2018, 16: 131-139. DOI:10.1016/j.csbj.2018.03.002 |