鲍根生1,2,3, 王玉琴1,2,3, 宋梅玲1,2,3, 王宏生1,2,3
1. 青海大学畜牧兽医科学院, 青海 西宁 810016;
2. 青海大学省部共建三江源生态与高原农牧业国家重点实验室, 青海 西宁 810016;
3. 青海省畜牧兽医科学院, 青藏高原优良牧草种质资源研究重点实验室, 青海 西宁 810016
收稿日期:2019-06-16;修回日期:2019-09-10;网络出版日期:2019-11-12
基金项目:国家自然科学基金(31660690,31700098);青海省"高端创新人才****"拔尖人才培养计划;青藏高原优良牧草种质资源研究重点实验室项目(2017-ZJ-Y12)
*通信作者:鲍根生, Tel:+86-971-8128271;E-mail:baogensheng2008@hotmail.com.
摘要:[目的] 根寄生植物持续掠夺禾草体内营养物质成为禾草生长过程中的生物逆境,禾草内生真菌提高冷季型禾草对生物和非生物逆境耐受能力。然而,有关禾草内生真菌对根寄生逆境下禾草生理过程调控作用的研究鲜有报道。[方法] 开展温室盆栽试验,以带菌(E+)和不带菌(E-)紫花针茅为研究对象,研究甘肃马先蒿不同寄生密度对紫花针茅抗氧化酶活性、渗透调节物质和根系活力影响的动态变化规律。[结果] 甘肃马先蒿寄生显著增加紫花针茅抗氧化酶活性、丙二醛和脯氨酸含量,而根系活力却快速降低;高密度寄生紫花针茅植株生理特性指标显著高于低密度寄生或自然生长植株;同时,E+紫花针茅抗氧化酶活性、脯氨酸含量和根系活力显著高于E-植株,而E-植株丙二醛含量显著高于E+植株。[结论] 禾草内生真菌通过增强抗氧化酶活性、调节细胞膜透性和增强根系生长能力的途径提高紫花针茅对根寄生逆境的耐受能力,利用植物替代方法带菌紫花针茅可以作为一种生物防治手段用于防控根寄生杂草。
关键词:根寄生植物生物逆境密度内生真菌抗氧化酶根系活力
Effects of Pedicularis kansuensis parasitism on physiological characteristics of grass-Epichlo? symbiont under different hemiparasite density
Gensheng Bao1,2,3, Yuqin Wang1,2,3, Meiling Song1,2,3, Hongsheng Wang1,2,3
1. Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, Qinghai Province, China;
2. State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai Province, China;
3. Key Laboratory of Qinghai-Tibet Plateau Forage Gerplasm Research, Qinghai Academy of Animal and Veterinary Medicine, Xining 810016, Qinghai Province, China
Received: 16 June 2019; Revised: 10 September 2019; Published online: 12 November 2019
*Corresponding author: Gensheng Bao, Tel: +86-971-8128271; E-mail:baogensheng2008@hotmail.com.
Foundation item: Supported by the National Natural Science Foundation of China (31660690, 31700098), by the Program for Qinghai Province Thousand Talent Innovative Plan and by the Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau (2017-ZJ-Y12)
Abstract: [Objective] Root hemiparasites should be taken into account as another biotic stress of grasses as they take directly water and nutrients from their hosts through haustoria. Cool-seasonal grasses have established mutualistic symbioses with Epichlo? endophytes:the grass-Epichlo? symbionts perform better than endophyte-free plants in biotic or abiotic stresses. However, few studies have considered the benefits of Epichlo? endophyte on the physiological characteristics of host grasses under parasitic stress. [Methods] We performed a manipulated pot experiment with endophyte-infected (E+) and endophyte-free (E-) Stipa purpurea. Host grasses were planted with different densities of the hemiparasitic plant Pedicularis kansuensis. The antioxidant enzymes, osmotic materials and root vitality of S. purpurea were determined during different parasitising periods. [Results] The presence of P. kansuensis increased the malondialdehyde (MDA) and proline content and activities of antioxidant enzymes but decreased the root vitality of S. purpurea, and the physiological parameters of S. purpurea parasitised by high hemiparasite density were higher than low hemiparasite density. Meanwhile, activities of antioxidant enzymes, proline content and root vitality of E+ S. purpurea were significantly higher than in E-counterparts; in contrast, the MDA content of E+ plants was lower than E-counterparts. [Conclusion] Our results suggest that Epichlo? endophyte can improve S. purpurea tolerance to parasitic stress by increasing activities of antioxidant enzymes, adjusting cell membrane permeability and strengthening the root vitality of host plants. Consequently, endophyte-infected S. purpurea may be a potential candidate as a biological method for effective and sustainable management of the hemiparasite weed-P. kansuensis.
Keywords: root hemiparasitebiotic stressdensityEpichlo?antioxidantsroot vitality
根寄生植物是被子植物中一类寄生在寄主根部,以掠夺寄主体内水分和营养物质为生的特殊植物类群,分布于草地、森林、农田等各类生态系统[1]。寄主根部形成的特殊器官——吸器是根寄生植物最明显的形态特征,吸器形成的木质部(或韧皮部)通道是根寄生植物获取寄主体内资源的唯一途径,寄主营养流失速度随根寄生植物个体增长而增加,最终影响寄主正常生长发育,甚至畸形生长[2]。近年来,甘肃马先蒿(Pedicularis kansuensis)在青海和新疆等地的天然退化草地中大面积滋生,成为天然草地重度退化演替过程中重要指示植物且每年以3.3×103 ha的速度快速蔓延[3]。根部半寄生特性是甘肃马先蒿特有的生存策略,常寄生禾本科和豆科植物根部并获取生长所需的营养物质,导致禾本科和豆科植物生物量快速降低[4]。
根寄生植物持续从寄主体内获取养分易造成寄主长期处于营养“饥饿”状态,成为寄主生长过程中的一种生物逆境[5-7]。在生物逆境(草食家畜、植食性昆虫和病原微生物)下,植物体内会积累大量影响植物细胞膜透性和渗透压力的过氧化物,影响植物正常生长和生理代谢过程[8]。由于特殊养分获取途径、特有挥发性气味、土壤种子库的持久性和更新能力较快等因素导致甘肃马先蒿种群扩张和更新速度较快[9-11],截至目前针对甘肃马先蒿危害严重的退化草地尚缺乏有效且对环境安全的防控方法。近期研究发现,植物共生微生物能有效提高宿主对甘肃马先蒿根寄生危害的耐受能力[12-14]。隋晓琳等(2019)研究发现豆科植物根部接种根瘤菌和丛枝菌根能显著增强豆科植物对养分、水分和太阳光等资源获取能力,恶化甘肃马先蒿的生存环境,遏制甘肃马先蒿吸器在豆科植物根部的形成,从而缓解甘肃马先蒿对豆科植物的根寄生危害[15]。可见,豆科植物共生的丛植菌根和根瘤菌对甘肃马先蒿根寄生危害的豆科植物具有一定缓解效应。
冷季型禾草作为根寄生植物最重要的寄生对象,常与Epichlo?属内生真菌建立互利共生关系。Epichlo?属内生真菌是一类侵染冷季型禾草茎叶而不表现外部病症的共生微生物,禾草为内生真菌提供生存场所和生长所需营养物质,同时禾本科植物的种子也是内生真菌实现垂直传播的主要媒介[16];作为回报,内生真菌不仅提高禾草对草食动物、病原菌和土壤线虫的防御能力[17],而且增强禾草对干旱、冷冻、水淹、盐碱化和重金属污染土壤等非生物逆境的耐受能力[18-19]。虽然Epichlo?属内生真菌侵染禾草在生物和非生物逆境环境中表现出较强的竞争力和存活率,但有关内生真菌对禾草在根寄生逆境下生长和生理过程影响的研究鲜有报道。
基于此,本研究通过开展温室盆栽试验,以感染(E+)和未感染内生真菌(E-)的紫花针茅(Stipa purpurea)为研究对象,构建不同密度甘肃马先蒿寄生紫花针茅E+和E-植株为研究体系。主要开展以下研究:(1)甘肃马先蒿根寄生逆境是否影响紫花针茅抗氧化酶活性和根系活力?(2)甘肃马先蒿对紫花针茅根寄生逆境是否存在密度效应?(3) E+和E-植株对甘肃马先蒿根寄生逆境响应是否出现差异?通过解答上述研究问题,明晰根寄生胁迫对寄主生理过程的影响及内生真菌对根寄生危害禾草抗氧化酶活性及根系活力潜在调控作用。
1 材料和方法 1.1 供试种子来源 2015年10月,在青海省海北州海晏县甘子河镇托勒村天然草地上(37°06′54.78″N,100°70′88.00″E),采集紫花针茅和甘肃马先蒿成熟种子。采集地草地类型为典型草甸化草原,草地植被建群种为矮嵩草(Kobresia humilis),紫花针茅、麦宾草(Elymus tangutorum)和草地早熟禾(Poa pratensis)为主要伴生禾草;由于放牧强度较高(4只藏羊/ha),甘肃马先蒿在退化草地中大面积发生,与紫花针茅、麦宾草等禾草呈“斑块状”集群分布[4]。为保证采集植物种子能真实反映紫花针茅种群水平,按照单株采集的方法分别采集10株紫花针茅地上植株,每个单株采样点间相隔20 m左右。另外,随机挑选50株甘肃马先蒿成熟植株收集种子。将收集的植物全株及种子保存在4 ℃冰箱内以备后用。
根据Li等(2004)禾草茎髓内生真菌检测方法对野外采集紫花针茅单株样品进行内生真菌带菌率检测[20]。同时,将种皮表面消毒处理的种子摆放在马铃薯琼脂培养基(PDA)上,25 ℃黑暗环境下培养4周,待种子表面形成内生真菌菌丝后进行纯培养,利用微管蛋白(tubβ)、转录延长因子(tefα)和肌动蛋白(actin)构建系统发育树,将紫花针茅感染的内生真菌鉴定为Epichlo? inebrians[21]。同时,将野外采集E+紫花针茅种子用10%甲基托布津浸泡6 h剔除种子内种皮及糊粉层中内生真菌, 对照组用蒸馏水浸泡E+种子6 h[22]。将E-种子(杀菌剂处理)和自然带菌种子播种于250 mL花盆,花盆内装满按1:2比例混匀的灭菌土壤和细沙。2016年5月中旬,将E+和E-紫花针茅幼苗移栽至青海大学试验田。9月中旬,按照单株收集种子的方法,分别收集E+和E-植株种子。同时,分别随机挑选20粒E+和E-植株种子进行内生真菌带菌率检测。具体方法为:将种子浸泡于1%次氯酸钠24 h,软化种子用苯胺蓝染液染色,20倍光学显微镜下观察种皮及糊粉层内有无菌丝出现[22]。检测结果表明E+植株带菌率高达100%,而E-植株带菌率仅为4%。
1.2 幼苗培养及试验设计 2017年5月,分别挑选500粒E+和E-紫花针茅种子及1500粒野外收集的甘肃马先蒿种子,用1%次氯酸钠溶液浸泡种子10 min并用蒸馏水冲洗干净。将1粒E+或E-紫花针茅种子播种于500 mL花盆中央,花盆内装满按9:1比例混匀的灭菌细砂和农田土,农田土采集于青海大学试验田表层0-20 cm土壤。将花盆随机摆放在青海大学畜牧兽医科学院草原所智能温室内,设定白天25℃和夜晚10 ℃。同时,将甘肃马先蒿种子摆放在9 cm培养皿内,并将培养皿置于25 ℃光照条件的光照培养箱中。1周后,将6粒萌发的甘肃马先蒿种子种植在距离紫花针茅2 cm处,甘肃马先蒿种子间的距离为3-4 cm。幼苗生长初期,每周每盆内添加25 mL Long Ashton营养液直到甘肃马先蒿与紫花针茅建立寄生关系[23]。花盆随机摆放在温室苗床上,每周调换花盆位置从而消除边际效应。当甘肃马先蒿出现异速生长症状可认为甘肃马先蒿与紫花针茅已成功建立根部寄生关系[24],前期研究发现紫花针茅移栽10周后,甘肃马先蒿在紫花针茅根部形成吸器。为调查不同密度甘肃马先蒿寄生对紫花针茅E+和E-紫花针茅植株生理特性的影响,根据野外甘肃马先蒿土壤种子库数量和天然草地群落密度调查数据[4, 25],紫花针茅移栽第10周将花盆内甘肃马先蒿间除至1个和3个。
根据甘肃马先蒿密度和紫花针茅带菌情况将试验划分为6个处理:(1)带菌紫花针茅植株(E+);(2)不带菌紫花针茅植株(E-);(3)带菌紫花针茅植株与1株甘肃马先蒿建立寄生关系(E+ × P);(4)不带菌紫花针茅植株与1株甘肃马先蒿建立寄生关系(E- × P);(5)带菌紫花针茅植株与3株甘肃马先蒿建立寄生关系(E+ × 3P);(6)不带菌紫花针茅植株与3株甘肃马先蒿建立寄生关系(E- × 3P)。每个处理重复50次,合计300盆。
1.3 紫花针茅生理指标测定 甘肃马先蒿成功寄生紫花针茅第3、5、7和9周随机挑选5盆,每盆取新鲜茎叶1 g左右,分别测定紫花针茅体内抗氧化酶(超氧岐化酶、过氧化氢酶和过氧化物酶)活性、根系活力、丙二醛和脯氨酸含量。其中,采用硫代巴比妥酸法测定丙二醛含量[26],采用酸性茚三酮法测定脯氨酸含量[27],采用氮蓝四唑法测定超氧岐化酶活性[28],过氧化氢酶活性测定采用愈创木酚法[28],过氧化物酶活性测定采用紫外吸收法[29],根系活力主要参考Clemensson-Lindell (1994)的氯化三苯基四氮唑(TTC)方法。具体方法为:称取根尖样品0.5 g,37 ℃暗保温条件下,用浓度为0.4% TTC和磷酸缓冲液的等量混合液浸泡3 h,之后加入1 mol/L硫酸溶液,取出根系样品进行研磨,期间加入4 mL乙酸乙酯混匀研磨样品,红色提取液定容至10 mL。采用分光光度计测量波长485 nm的比色值,通过标准曲线计算四氮唑的还原量(即根系活力)[30]。
1.4 统计分析 采用重复测量方差分析甘肃马先蒿不同寄生时期内甘肃马先蒿密度和紫花针茅带菌情况及二者交互作用对紫花针茅抗氧化酶(超氧岐化酶、过氧化物酶和过氧化氢酶)活性、根系活力、丙二醛和脯氨酸含量影响。同时,采用独立样本T检验分析同一采样时期带菌和不带菌紫花针茅上述生理指标间差异。为满足方差齐性检验和正态分布规则,生理指标数据采用平方根转化。采用SPSS 19.0分析软件对数据进行统计分析。
2 结果和分析 2.1 甘肃马先蒿不同寄生密度对紫花针茅抗氧化酶活性的影响 甘肃马先蒿不同寄生密度、紫花针茅带菌情况在不同寄生时期对紫花针茅抗氧化酶活性有显著影响;其中,不同寄生时期和甘肃马先蒿密度间存在明显交互作用(表 1)。甘肃马先蒿未寄生条件下,紫花针茅带菌和不带菌植株间超氧岐化酶、过氧化氢酶和过氧化物酶活性差异不显著;当紫花针茅处于甘肃马先蒿根寄生条件下,带菌植株抗氧化酶活性显著高于不带菌植株(图 1-3)。随着甘肃马先蒿密度增加,紫花针茅超氧岐化酶和过氧化物酶持续增加(图 1-2);而低密度甘肃马先蒿寄生紫花针茅时过氧化氢酶活性最高(图 3)。随着甘肃马先蒿寄生周期增长,紫花针茅超氧岐化酶活性持续增加(图 1),而过氧化物酶活性在寄生后第7周出现最高值,随后又快速降低(图 2)。过氧化氢酶活性随着甘肃马先蒿寄生周期增长快速增加,低密度甘肃马先蒿寄生紫花针茅第7周过氧化氢酶最高,随后缓慢降低;而高密度寄生紫花针茅过氧化氢酶活性持续增加(图 3)。·
表 1. 甘肃马先蒿不同寄生密度(D)和紫花针茅内生真菌带菌情况(E)在不同寄生时期(T)对紫花针茅超氧岐化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性影响的重复度量方差分析结果 Table 1. Results of repeated measure analysis of variance for the effects of different Pedicularis kansuensis density (D), endophyte status of host grass (E) at different weeks (T) on the activities of superoxide dismutase (SOD), peroxidases (POD) and catalase (CAT) proline of Stipa purpurea
Treatment | DF | SOD activities/ (U/g fresh weight) | POD activities/ (U/g fresh weight) | CAT activities/ (U/g fresh weight) | |||||
F | P | F | P | F | P | ||||
D | 2 | 140.23 | < 0.01 | 162.20 | < 0.01 | 381.26 | < 0.01 | ||
E | 1 | 4.15 | 0.05 | 35.89 | < 0.01 | 92.39 | < 0.01 | ||
T | 3 | 108.18 | < 0.01 | 73.22 | < 0.01 | 134.19 | < 0.01 | ||
D×E | 2 | 0.39 | 0.68 | 4.38 | 0.02 | 16.60 | < 0.01 | ||
D×T | 6 | 30.19 | < 0.01 | 4.03 | < 0.01 | 48.87 | < 0.01 | ||
E×T | 3 | 48.49 | < 0.01 | 0.50 | 0.69 | 1.13 | 0.36 | ||
D×E×T | 6 | 4.29 | < 0.01 | 0.29 | 0.94 | 1.22 | 0.32 | ||
The F value indicates the ratio of the variance of the group means to that of the pooled within group variance, the P value indicates the significant level. |
表选项
图 1 甘肃马先蒿不同寄生密度在不同寄生时期对紫花针茅带菌和不带菌植株超氧岐化酶(SOD)活性的影响 Figure 1 Effects of the different Pedicularis kansuensis density on the superoxide dismutase (SOD) activities of Stipa purpurea after different time parasitized by P. kansuensis. Data are the mean±standard errors. The asterisk indicates the significant differences (P < 0.05) in SOD activities between E+ and E- plants. |
图选项 |
图 2 甘肃马先蒿不同寄生密度在不同寄生时期对紫花针茅带菌和不带菌植株过氧化物酶(POD)活性的影响 Figure 2 Effects of the different Pedicularis kansuensis density on the peroxidase (POD) activities of Stipa purpurea after different time parasitized by P. kansuensis. Data are the mean±standard errors. The asterisk indicates the significant differences (P < 0.05) in SOD activities between E+ and E- plants. |
图选项 |
图 3 甘肃马先蒿不同寄生密度在不同寄生时期对紫花针茅带菌和不带菌植株过氧化氢酶(CAT)活性的影响 Figure 3 Effects of the different Pedicularis kansuensis density on the catalase (CAT) activities of Stipa purpurea after different time parasitized by P. kansuensis. Data are the mean±standard errors. The asterisk indicates the significant differences (P < 0.05) in SOD activities between E+ and E- plants. |
图选项 |
2.2 甘肃马先蒿不同寄生密度对紫花针茅丙二醛和脯氨酸含量影响 不同寄生时期,紫花针茅内生真菌带菌情况和甘肃马先蒿不同寄生密度对紫花针茅丙二醛和脯氨酸含量有显著影响(表 2);其中,甘肃马先蒿不同寄生时期与紫花针茅带菌情况、甘肃马先蒿不同寄生密度和不同寄生时期间存在明显的交互作用(表 2)。随着甘肃马先蒿密度增加,紫花针茅丙二醛和脯氨酸含量显著高于未寄生植株丙二醛和脯氨酸含量;同时,高密度甘肃马先蒿寄生紫花针茅植株丙二醛和脯氨酸含量也高于低密度寄生植株(图 4-5)。自然生长条件下,带菌和不带菌紫花针茅植株间丙二醛和脯氨酸含量差异不显著(图 4-5);然而,甘肃马先蒿寄生条件下,带菌紫花针茅植株丙二醛含量显著低于不带菌植株(图 4),而带菌紫花针茅植株脯氨酸含量显著高于不带菌植株(图 5)。
表 2. 甘肃马先蒿不同寄生密度(D)和紫花针茅内生真菌带菌情况(E)在不同寄生时期(T)对紫花针茅丙二醛含量(MDA)、脯氨酸含量和根系活力影响的重复度量方差分析结果 Table 2. Results of repeated measure analysis of variance for the effects of different Pedicularis kansuensis density (D), endophyte status of host grass (E) at different weeks (T) on the content of malondialdehyde (MDA) and proline and root vitality of Stipa purpurea
Treatment | DF | MDA content/(mmol/g fresh weight) | Proline content/(μg/g) | Root vitality/[mg/(g?h)] | |||||
F | P | F | P | F | P | ||||
D | 2 | 186.92 | < 0.01 | 366.55 | < 0.01 | 231.19 | < 0.01 | ||
E | 1 | 25.04 | < 0.01 | 86.70 | < 0.01 | 6.71 | 0.02 | ||
T | 3 | 57.92 | < 0.01 | 91.88 | < 0.01 | 26.61 | < 0.01 | ||
D×E | 2 | 4.69 | 0.02 | 26.35 | < 0.01 | 2.82 | 0.08 | ||
D×T | 6 | 6.78 | < 0.01 | 15.32 | < 0.01 | 3.98 | < 0.01 | ||
E×T | 3 | 0.57 | 0.64 | 4.59 | 0.01 | 0.19 | 0.90 | ||
D×E×T | 6 | 0.12 | 0.99 | 2.02 | 0.08 | 0.24 | 0.96 | ||
The F value indicates the ratio of the variance of the group means to that of the pooled within group variance, the P value indicates the significant level. |
表选项
图 4 甘肃马先蒿不同寄生密度在不同寄生时期对紫花针茅带菌和不带菌植株丙二醛含量的影响 Figure 4 Effects of the different Pedicularis kansuensis density on the content of malondialdehyde (MDA) of Stipa purpurea after different time parasitized by P. kansuensis. Data are the mean±standard errors. The asterisk indicates the significant differences (P < 0.05) in MDA content between E+ and E- plants. |
图选项 |
图 5 甘肃马先蒿不同寄生密度在不同寄生时期对紫花针茅带菌和不带菌植株脯氨酸含量的影响 Figure 5 Effects of the different Pedicularis kansuensis density on the content of proline of Stipa purpurea after different time parasitized by P. kansuensis. Data are the mean±standard errors. The asterisk indicates the significant differences (P < 0.05) in proline contents between E+ and E- plants. |
图选项 |
2.3 甘肃马先蒿不同寄生密度对紫花针茅根系活力的影响 甘肃马先蒿不同寄生密度、紫花针茅感染内生真菌情况在不同寄生时期对紫花针茅根系活力有显著影响(表 2);其中,甘肃马先蒿不同寄生密度和不同寄生时期出现明显的交互作用(表 2)。随着甘肃马先蒿寄生密度增加,紫花针茅根系活力明显降低,尤其3株甘肃马先蒿寄生条件下紫花针茅根系活力显著低于1株寄生和不寄生植株(图 6)。同时,带菌紫花针茅植株根系活力显著高于不带菌植株,而自然生长带菌和不带菌紫花针茅根系活力差异不显著(图 6)。
图 6 甘肃马先蒿不同寄生密度在不同寄生时期对紫花针茅带菌和不带菌植株根系活力的影响 Figure 6 Effects of the different Pedicularis kansuensis density on the root vitality of Stipa purpurea after different time parasitized by P. kansuensis. Data are the mean±standard errors. The asterisk indicates the significant differences (P < 0.05) in root vitality between E+ and E- plants. |
图选项 |
3 讨论 植物遭受生物或非生物逆境时,植物细胞内会积累大量的活性氧和自由基,过量的活性氧和自由基易造成细胞膜脂过氧化,从而损害植物细胞膜系统并最终影响植物生长[8, 31]。然而,当植物接收逆境信号后,体内会产生超氧岐化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)等一系列具有抗氧化能力的酶类,这些酶具有清除自由基的功能,从而保护植物细胞膜不受活性氧的伤害[32]。本研究发现,甘肃马先蒿寄生的紫花针茅体内抗氧化酶(SOD、POD和CAT)活性明显高于未寄生处理植株(图 1-3),说明甘肃马先蒿根寄生过程造成紫花针茅生长处于一种胁迫环境,导致紫花针茅调控体内抗氧化酶活性并对根寄生逆境作出响应[7]。同时,随甘肃马先蒿寄生密度增加,紫花针茅体内抗氧化酶活性显著提高(图 1-3),说明甘肃马先蒿个体数量增加将进一步增加紫花针茅的根寄生逆境强度,导致紫花针茅体内的抗氧化酶处于一种高活性状态。这一点也通过检测紫花针茅根部吸器数量得到进一步证实,高密度寄生紫花针茅根部吸器数量高于低密度寄生植株根部(鲍根生等,数据未发表)。同时,一些研究也证实寄主通过提高抗氧化酶活性对根寄生逆境作出响应[7, 33]。例如,Glodwasser等(1999)发现瓜列当(Orbanche aegyptiaca)寄生野豌豆后,野豌豆体内SOD活性增加[33]。李霞等(2006)也发现肉苁蓉(Cistanche deserticola)与梭梭(Haloxylon ammodendron)形成根寄生关系后,梭梭体内SOD、POD和CAT活性显著高于自然生长梭梭[7]。由此可见,寄主植物通过启动体内的抗氧化酶系统清除体内因根寄生逆境所产生的活性氧和自由基,从而降低根寄生逆境对寄主的氧化伤害[32-34]。
众多研究表明,内生真菌侵染能提高宿主的抗氧化物质含量,进而清除宿主在生物和非生物逆境下产生的活性氧物质[35-36]。本研究也发现,甘肃马先蒿根寄生条件下内生真菌侵染可显著提高紫花针茅的抗氧化酶活性,增强紫花针茅对根寄生危害的耐受能力;而自然生长状态下带菌与不带菌植株间没有差异(图 1-3)。可见,禾草内生真菌共生体在不同生物和非生物逆境条件表现出积累更多生物量和保持较高存活率,而潜在的作用机理可能为:(1)内生真菌提高抗氧化酶活性,增强禾草对多余活性氧和自由基清除能力[35];(2)内生真菌侵染能降低禾草在逆境环境中活性氧和自由基产生[37]。同时,逆境条件下更易激发内生真菌对禾草体内抗氧化酶产量和活性调控作用,导致在自然生长条件下带菌植株并未表现出生长和生理调节方面的优势[32, 38]。
丙二醛(MDA)作为植物细胞膜脂过氧化伤害过程的主要产物,常作为评价植物对生物和非生物逆境耐受能力的主要测定指标[31]。本研究发现,甘肃马先蒿寄生能显著提高紫花针茅体内丙二醛含量(图 4),说明甘肃马先蒿根寄生逆境中紫花针茅细胞质膜过氧化程度增加,从而加剧紫花针茅细胞质膜的损伤程度。同时,随甘肃马先蒿根寄生强度增加将进一步加强紫花针茅细胞质膜的伤害程度。这一研究结果与李霞等(2012)在瓜列当寄生梭梭后丙二醛含量快速增加的研究结果相同[7]。然而,不带菌植株丙二醛含量却显著高于带菌植株(图 4),说明禾草内生真菌侵染能增加根寄生逆境下紫花针茅抗氧化酶活性或降低丙二醛产生,进而缓解根寄生逆境对紫花针茅细胞质膜的损伤。这与内生真菌侵染植株在病原菌侵染、草食动物采食和土壤植食性线虫等生物逆境中丙二醛含量较低的研究结果相同[39-41]。
渗透调节是植物应对生物或非生物逆境的主要生存策略之一,而脯氨酸是植株体内主要的渗透调节物质[34]。当植物处于逆境条件下,植物体内产生的脯氨酸及时清除各类活性氧物质,从而保护植物细胞膜脂的过氧化伤害[42]。本研究发现,紫花针茅在高密度甘肃马先蒿寄生条件下体内积累脯氨酸含量显著高于低密度甘肃马先蒿寄生(图 5),说明随着根寄生植物寄生强度增加寄主体内渗透压增强。这可能与根寄生植物寄生寄主后保持较高的蒸腾速率并大量获取寄主体内水分和营养物质,从而导致寄主细胞产生渗透压有关[43]。另外,甘肃马先蒿寄生后带菌紫花针茅植株脯氨酸含量高于不带菌植株(图 5),说明当禾草遭受根寄生危害时,内生真菌侵染可以平衡禾草细胞内外渗透物质含量,从而提高禾草对根寄生胁迫的耐受能力[35, 39]。
根部作为根寄生植物危害寄主的主要部位,根系生长状态能更直观反映根寄生植物对寄主危害程度。同时,根系活力能准确表现寄主根系对根寄生胁迫的响应[44]。本研究发现,甘肃马先蒿寄生能快速降低紫花针茅根系活力(图 6);说明甘肃马先蒿与紫花针茅建立寄生关系后严重抑制紫花针茅根系生长,造成紫花针茅根系扩展和分枝能力降低。造成这种现象的原因为:(1)根寄生植物在寄主根部形成吸器过程中会对寄主根系造成一定损伤,导致根系分枝能力降低[45]。(2)根寄生植物通过根部吸器获取大量生长所需的水分和营养物质,导致寄主向根部分配光合产物急速降低,影响根系正常生长[46]。虽然甘肃马先蒿寄生导致紫花针茅根系活力降低,但内生真菌侵染显著提高紫花针茅根系活力(图 6)。说明在根寄生逆境下内生真菌侵染可以影响宿主根系的生长和扩展能力,进而提高宿主对根寄生逆境的耐受能力[38]。
综上所述,本研究进一步揭示Epichlo?内生真菌对紫花针茅处于一种新的生物逆境-根寄生胁迫下对宿主生理过程的潜在调控作用,发现紫花针茅体内保护性酶活性、渗透调节物质和根系活力在甘肃马先蒿根寄生逆境中发生明显变化,而与紫花针茅共生的Epichlo?内生真菌通过调节抗氧化酶活性、调节细胞膜膜透性和增强根系生长能力的途径提高紫花针茅对根寄生逆境的耐受能力。由此可见,感染Epichlo?内生真菌的紫花针茅可以作为一种生物防治手段用于防控根寄生杂草——甘肃马先蒿,通过合理控制载畜量为可食性禾草——紫花针茅提供生长和扩张契机,同时内生真菌侵染可提高紫花针茅与同域植物竞争力,从而恶化甘肃马先蒿生存环境和降低根寄生杂草发生面积,最终实现甘肃马先蒿大面积发生高寒退化草地治理和持续有效利用的目标。
References
[1] | Phoenix GK, Press MC. Linking physiological traits to impacts on community structure and function: the role of root hemiparasitic Orobanchaceae (ex-Scrophulariaceae). Journal of Ecology, 2005, 93(1): 67-78. DOI:10.1111/j.1365-2745.2004.00950.x |
[2] | Hegenauer V, K?rner M, Albert M. Plants under stress by parasitic plants. Current Opinion in Plant Biology, 2017, 38: 34-41. DOI:10.1016/j.pbi.2017.04.006 |
[3] | Liu YY, Hu YK, Yu JM, Li KH, Gao GG, Wang X. Study on harmfulness of Pedicularis myriophylla and its control measures. Arid Zone Research, 2008, 25(6): 778-782. (in Chinese) 柳妍妍, 胡玉昆, 于建梅, 李凯辉, 高国刚, 王鑫. 轮叶马先蒿危害现状及防除对策. 干旱区研究, 2008, 25(6): 778-782. |
[4] | Bao GS, Suetsugu K, Wang HS, Yao X, Liu L, Ou J, Li CJ. Effects of the hemiparasitic plant Pedicularis kansuensis on plant community structure in a degraded grassland. Ecological Research, 2015, 30(3): 507-515. |
[5] | Runyon JB, Mescher MC, de Moraes CM. Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens. Plant Signaling & Behavior, 2010, 5(8): 929-931. |
[6] | Smith JL, de Moraes CM, Mescher MC. Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Management Science, 2009, 65(5): 497-503. DOI:10.1002/ps.1714 |
[7] | Li X, Ma YQ, Song YX, Shui JF, Li XW. Effects of Cistanche deserticola parasitization on Haloxylon ammodendron seedlings protective enzyme activities and osmotic adjustment substance contents. Chinese Journal of Ecology, 2009, 28(8): 1531-1536. (in Chinese) 李霞, 马永清, 宋玉霞, 税军峰, 李秀维. 肉苁蓉寄生对梭梭幼苗保护酶活性及渗透调节物质的影响. 生态学杂志, 2009, 28(8): 1531-1536. |
[8] | Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55: 373-399. DOI:10.1146/annurev.arplant.55.031903.141701 |
[9] | Sui XL, Huang W, Li YJ, Guan KY, Li AR. Host shoot clipping depresses the growth of weedy hemiparasitic Pedicularis kansuensis. Journal of Plant Research, 2015, 128(4): 563-572. DOI:10.1007/s10265-015-0727-6 |
[10] | Hou Y, Cheng XY, Ren GH, Deng B, Shang ZH. Allelopathic effects of the typical "black soil land" poisonous plant on Pedicularis kansuensis in Qinghai-Tibetan Plateau. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(8): 1651-1656. (in Chinese) 后源, 程晓月, 任国华, 邓斌, 尚占环. 青藏高原"黑土滩"常见毒草对甘肃马先蒿的化感作用. 西北植物学报, 2011, 31(8): 1651-1656. |
[11] | Liu YY, Hu YK, Wang X, Gong YM, Li KH. Studies on characteristics of soil seed bank of Pedicularis verticilata community. Journal of Natural Resources, 2011, 26(1): 48-57. (in Chinese) 柳妍妍, 胡玉昆, 王鑫, 公延明, 李凯辉. 轮叶马先蒿群落土壤种子库特征研究. 自然资源学报, 2011, 26(1): 48-57. |
[12] | Louarn J, Carbonne F, Delavault P, Bécard G, Rochange S. Reduced germination of Orobanche cumana seeds in the presence of arbuscular mycorrhizal fungi or their exudates. PLoS One, 2012, 7(11): e49273. DOI:10.1371/journal.pone.0049273 |
[13] | Sui XL, Li AR, Chen Y, Guan KY, Zhuo L, Liu YY. Arbuscular mycorrhizal fungi: potential biocontrol agents against the damaging root hemiparasite Pedicularis kansuensis?. Mycorrhizal, 2014, 24(3): 187-195. DOI:10.1007/s00572-013-0528-5 |
[14] | Bouraoui M, Abbes Z, Rouissi M, Abdi N, Hemissi I, Kouki S, Sifi B. Effect of rhizobia inoculation, N and P supply on Orobanche foetida parasitising faba bean (Vicia faba minor) under field conditions. Biocontrol Science and Technology, 2016, 26(6): 776-791. DOI:10.1080/09583157.2016.1157137 |
[15] | Sui XL, Zhang T, Tian YQ, Xue RJ, Li AR. A neglected alliance in battles against parasitic plants: arbuscular mycorrhizal and rhizobial symbioses alleviate damage to a legume host by root hemiparasitic Pedicularis species. New Phytologist, 2019, 221(1): 470-481. DOI:10.1111/nph.15379 |
[16] | Saikkonen K, W?li P, Helander M, Faeth SH. Evolution of endophyte-plant symbioses. Trends in Plant Science, 2004, 9(6): 275-280. DOI:10.1016/j.tplants.2004.04.005 |
[17] | Saikkonen K, Faeth SH, Helander M, Sullivan T. Fungal endophytes: a continuum of interactions with host plants. Annual Review of Ecology and Systematics, 1998, 29: 319-343. DOI:10.1146/annurev.ecolsys.29.1.319 |
[18] | Cheplick GP, Perera A, Koulouris K. Effect of drought on the growth of Lolium perenne genotypes with and without fungal endophytes. Functional Ecology, 2000, 14(6): 657-667. DOI:10.1046/j.1365-2435.2000.00466.x |
[19] | Saikkonen K, Mikola J, Helander M. Endophytic phyllosphere fungi and nutrient cycling in terrestrial ecosystems. Current Science, 2015, 109(1): 121-126. |
[20] | Li CJ, Nan ZB, Paul VH, Dapprich PD, Liu Y. A new Neotyphodium species symbiotic with drunken horse grass (Achnatherum inebrians) in China. Mycotaxon, 2004, 90(1): 141-147. |
[21] | Bao GS, Li CJ. Isolation and identification of endophytes infecting Stipa purpurea, a dominant grass in meadows of the Qinghai-Tibet Plateau. Acta Prataculturae Sinica, 2016, 25(3): 32-42. (in Chinese) 鲍根生, 李春杰. 青藏高原高寒草地优势禾草-紫花针茅内生真菌分离和鉴定. 草业学报, 2016, 25(3): 32-42. |
[22] | Gundel PE, Martínez-Ghersa MA, Ghersa CM. Threshold modelling Lolium multiflorum seed germination: effects of Neotyphodium endophyte infection and storage environment. Seed Science and Technology, 2012, 40(1): 51-62. DOI:10.15258/sst.2012.40.1.06 |
[23] | Li AR, Li YJ, Smith SE, Smith FA, Guan KY. Nutrient requirements differ in two Pedicularis species in the absence of a host plant: implication for driving forces in the evolution of host preference of root hemiparasitic plants. Annals of Botany, 2013, 112(6): 1099-1106. DOI:10.1093/aob/mct179 |
[24] | Fer A, Russo N, Simier P, Arnaud MC, Thalouarn P. Physiological changes in a root hemiparasitic angiosperm, Thesium humile (Santalaceae), before and after attachment to the host plant (Triticum vulgare). Journal of Plant Physiology, 1994, 143(6): 704-710. DOI:10.1016/S0176-1617(11)81161-2 |
[25] | Shang ZH, Yang SH, Shi JJ, Wang YL, Long RJ. Seed rain and its relationship with above-ground vegetation of degraded Kobresia meadows. Journal of Plant Research, 2013, 126(1): 63-72. DOI:10.1007/s10265-012-0498-2 |
[26] | Li HS. Principles and techniques of plant physiological biochemical experiment. Beijing: Higher Education Press, 2000: 46-57. (in Chinese) 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000: 46-57. |
[27] | Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant and Soil, 1973, 39(1): 205-207. DOI:10.1007/BF00018060 |
[28] | Beyer WF Jr, Fridovich I. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry, 1987, 161(2): 559-566. |
[29] | Beers RF Jr, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. The Journal of Biological Chemistry, 1952, 195(1): 133-140. |
[30] | Clemensson-Lindell A. Triphenyltetrazolium chloride as an indicator of fine-root vitality and environmental stress in coniferous forest stands: applications and limitations. Plant and Soil, 1994, 159(2): 297-300. DOI:10.1007/BF00009293 |
[31] | Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant Cell, 2005, 17(7): 1866-1875. DOI:10.1105/tpc.105.033589 |
[32] | Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. Journal of Experimental Botany, 2014, 65(5): 1229-1240. DOI:10.1093/jxb/ert375 |
[33] | Goldwasser Y, Hershenhorn J, Plakhine D, Kleifeld Y, Rubin B. Biochemical factors involved in vetch resistance to Orobanche aegyptiaca. Physiological and Molecular Plant Pathology, 1999, 54(3/4): 87-96. |
[34] | Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2014, 2: 53. |
[35] | Hamilton CE, Gundel PE, Helander M, Saikkonen K. Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Diversity, 2012, 54(1): 1-10. DOI:10.1007/s13225-012-0158-9 |
[36] | Scott B, Takemoto D, Tanaka A. Fungal endophyte production of reactive oxygen species is critical for maintaining the mutualistic symbiotic interaction between Epichlo? festucae and perennial ryegrass. Plant Signaling & Behavior, 2007, 2(3): 171-173. |
[37] | Rodriguez R, Redman R. More than 400 million years of evolution and some plants still can't make it on their own: plant stress tolerance via fungal symbiosis. Journal of Experimental Botany, 2008, 59(5): 1109-1114. DOI:10.1093/jxb/erm342 |
[38] | Song ML, Li XZ, Saikkonen K, Li CJ, Nan ZB. An asexual Epichlo? endophyte enhances waterlogging tolerance of Hordeum brevisubulatum. Fungal Ecology, 2015, 13: 44-52. DOI:10.1016/j.funeco.2014.07.004 |
[39] | Xia C, Li NN, Zhang YW, Li CJ, Zhang XX, Nan ZB. Role of Epichlo? endophytes in defense responses of cool-season grasses to pathogens: a review. Plant Disease, 2018, 102(11): 2061-2073. DOI:10.1094/PDIS-05-18-0762-FE |
[40] | Saikkonen K, Helander M, Faeth SH, Schulthess F, Wilson D. Endophyte-grass-herbivore interactions: the case of Neotyphodium endophytes in Arizona fescue populations. Oecologia, 1999, 121(3): 411-420. DOI:10.1007/s004420050946 |
[41] | Koppenh?fer AM, Fuzy EM. Effects of turfgrass endophytes (Clavicipitaceae: Ascomycetes) on white grub (Coleoptera: Scarabaeidae) control by the entomopathogenic nematode Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae). Environmental Entomology, 2003, 32(2): 392-396. DOI:10.1603/0046-225X-32.2.392 |
[42] | Verbruggen N, Hermans C. Proline accumulation in plants: a review. Amino Acids, 2008, 35(4): 753-759. DOI:10.1007/s00726-008-0061-6 |
[43] | Jiang F, Jeschke WD, Hartung W. Water flows in the parasitic association Rhinanthus minor/Hordeum vulgare. Journal of Experimental Botany, 2003, 54(389): 1985-1993. DOI:10.1093/jxb/erg212 |
[44] | Tě?itel J, Tě?itelová T, Fisher JP, Lep? J, Cameron DD. Integrating ecology and physiology of root-hemiparasitic interaction: interactive effects of abiotic resources shape the interplay between parasitism and autotrophy. New Phytologist, 2015, 205(1): 350-360. DOI:10.1111/nph.13006 |
[45] | Joel DM, Gressel J, Musselman LJ. Parasitic Orobanchaceae: parasitic mechanisms and control strategies. Berlin Heidelberg: Springer-Verlag, 2013: 75-84. |
[46] | Matthies D. Parasitic and competitive interactions between the hemiparasites Rhinanthus serotinus and Odontites rubra and their host Medicago sativa. Journal of Ecology, 1995, 83(2): 245-251. DOI:10.2307/2261563 |