羊桂英, 朱娅宁, 谢晓俊, 周琪欢, 莫建初
浙江大学昆虫科学研究所, 农业部作物病虫害分子生物学重点实验室(农业部农业昆虫学重点实验室), 浙江 杭州 310058
收稿日期:2019-10-29;修回日期:2020-01-13;网络出版日期:2020-05-29
基金项目:国家自然科学基金(31770686);浙江省教育厅科研项目(Y201941400)
作者简介:莫建初:博士, 浙江大学昆虫科学研究所农业部作物病虫害分子生物学重点实验室(农业部农业昆虫学重点实验室)教授, 博士生导师, 从事城市昆虫学与害虫综合治理、白蚁共生真菌、生物质能源与生物资源开发等研究。发表论文230余篇, 获得国家发明专利15项, 实用新型专利18项, 目前主持的在研项目包括国家基金面上项目和省部级事业单位委托项目, 主编及参编著作10余本。.E-mail:mojianchu@zju.edu.cn.
*通信作者:莫建初, Tel/Fax:+86-571-88982695, E-mail:mojianchu@zju.edu.cn.
摘要:开发利用木质纤维素材料能显著增加地球上可再生资源的储备量。白蚁分布广泛,常见于热带和亚热带地区,它们借助细菌、古细菌、真菌等肠道微生物和原生动物协同降解食物中的木质纤维素,在生态系统的碳、氮循环中发挥着十分重要的作用。本文概括了近年来白蚁肠道微生物研究的进展,特别是近年来已被证明的肠道微生物在木质纤维素降解方面的作用,以期为后续研究木质纤维素的降解提供参考信息。
关键词:白蚁共生微生物木质纤维素降解多样性
Advances in termite-symbiotic microbe system in degradation of lignocelluloses
Guiying Yang, Yaning Zhu, Xiaojun Xie, Qihuan Zhou, Jianchu Mo
Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Ministry of Agriculture(Key Laboratory of Agricultural Entomology, Ministry of Agriculture), Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
Received: 29 October 2019; Revised: 13 January 2020; Published online: 29 May 2020
*Corresponding author: Mo Jianchu, Tel/Fax:+86-571-88982695, E-mail:mojianchu@zju.edu.cn.
Foundation item: Supported by the National Natural Science Foundation of China (31770686) and by the Scientific Research Fund of Zhejiang Provincial Education Department (Y201941400)
Abstract: The utilization of lignocellulosic materials can significantly increase the reserves of renewable resources on the planet. Termites are widely distributed in tropical and subtropical regions. Mainly, they can rely on intestinal microbes such as bacteria, archaea and fungi as well as the protozoa to degrade lignocellulose in food and play an important role in the cycle of carbon and nitrogen. This paper summarizes the studies on the termite gut microbes that have been proven to degrade lignocellulose in recent years. We hope to provide basic information for the subsequent study of lignocellulose degradation.
Keywords: termitesymbiotic microorganismlignocellulose degradationdiversity
木质纤维素材料是地球上含量最丰富的一种可再生资源,每年产量可达2000亿t[1]。其结构复杂,主要由纤维素、半纤维素、木质素、果胶等构成[2]。经过一系列裂解、水解、气化等工业加工过程,可以转变成乙醇、葡萄糖、淀粉等[3]。然而,由于纤维素、半纤维素和木质素之间紧紧相连,对酶有很强抗性,限制了木质纤维素材料的开发利用。
白蚁消化道呈螺旋状,肠道分为前肠、中肠和后肠,其中前肠和中肠较小,后肠结构十分复杂,分为P1–P5区,其中P3区显著膨大,不同食性的白蚁肠道结构也有差异(图 1)。根据后肠共生原生动物的有无,可以将白蚁分为两大类:含原生动物的低等白蚁(包括6个科,即草白蚁科Hodotermitidae、原白蚁科Termopsidae、澳白蚁科Mastotermitidae、木白蚁科Kalotermitidae、齿白蚁科Serritermitidae及鼻白蚁科Rhinotermitidae)和不含原生动物的高等白蚁(包括1个科,即白蚁科Termitidae,该科包括4个亚科,即大白蚁亚科Macrotermitinae、尖白蚁亚科Apicotermitinae、白蚁亚科Termitinae以及象白蚁亚科Nasutitermitinae[4])。
图 1 不同食性白蚁肠道图 Figure 1 Intestinal structure of termites with different feeding preferences. A: Reticulitermes flavipes (Rhinotermitidae); B: Nasutitermes corniger (Nasutitermitinae); C: Cubitermes spp. (Termitinae). C: crop; M: midgut; ms: mixed segment; P1–P5: proctodeal segments. |
图选项 |
白蚁能够利用其肠道内的共生微生物如细菌、古细菌、真菌及低等白蚁肠道内特有的原生动物等产生的木质纤维素降解酶类来降解木质纤维素,可降解65%–87%半纤维素及74%–99%纤维素, 且降解效率较其他无脊椎动物高[5]。其肠道微生物降解木质纤维素的研究方法主要分成两大类:一类是传统分离鉴定方法,即将肠道微生物分离,在合适的培养基上实现纯培养,然后接种到相应的培养基如纤维素培养基上,对其进行后续研究,观察其生长状况及检测各种理化指标的变化;另一类是利用分子生物学手段如高通量测序技术,研究微生物含有的相关功能基因,如木质纤维素降解酶类相关的基因[6]。
尽管白蚁自身能够分泌一些木质纤维素降解酶,但只有在肠道微生物的帮助下才可以完全实现对木质纤维素的利用。因此,研究肠道微生物产生的相关降解酶类,有望开发该资源,可为后续木质纤维素降解提供大量的降解酶。
1 原生动物 低等白蚁后肠中有许多原生动物,增加了后肠的物理分隔,使木质纤维素和相关降解酶的接触时间增长,同时可产生木质纤维素降解酶类,帮助白蚁降解木质纤维素,它们主要是鞭毛纲Mastigophora、孢子纲Sporozoa和纤毛纲Ciliata。其中,鞭毛虫类Flagellates是肠道中最重要的原生动物,数量可达103–107 CFU/mL,占瘤胃体积的90%以上[7]。低等白蚁肠道中的鞭毛虫主要隶属于副基体纲Parabasalea和Preaxostyla纲,其中副基体纲下有毛滴虫目Trichomonadida、Trichonymphida、Cristamonadida和Spirotrichonymphida等4个目,而属于Preaxostyla纲的鞭毛虫主要为锐滴虫目Oxymonadida[8]。
1877年Leidy[9]首次报道在北美散白蚁R. flavipes肠道中发现了尖状火焰滴虫Pyrsonympha vertens。Cleveland (1926)[10]发现鞭毛虫能降解木质纤维素。1981年,从狭颈动白蚁Zootermopsis angusticollis的肠道中分离出了Trichomitopsis termopsidis[11]。而后,越来越多的鞭毛虫被分离鉴定。Song等[12]研究不同地域4种散白蚁(黑胸散白蚁Reticulitermes chinensis、圆唇散白蚁R. labralis、黄胸散白蚁R. flaviceps、海南土白蚁Odontotermes hainanensis)肠道内鞭毛虫的多样性,共得到32个锐滴虫目鞭毛虫,主要包括Dinenympha和Pyrsonympha两个属和17个副基体纲鞭毛虫,包括Trichonymphida (Trichonymphidae、Eucomonymphidae、Teranymphidae)和Spiroterchonymphida (Spirotrichonympha)。Chen等[8]从黑胸散白蚁R. chinensis肠道中得到11个锐滴鞭毛虫,主要属于Dinenympha和Pyrsonympha两个属,同时鉴定了Dinenympha parva、D. exilis和Pyrsonympha sp.三种锐滴虫。Duarte等[13]给格拉塞散白蚁R. grassei制作6种不同的饮食方案,最后鉴定其肠道中的鞭毛虫群落,结果表明喂食未经处理的木材后,白蚁肠道中的鞭毛虫种类更多,直接喂食纤维素或者饥饿处理会导致多样性降低;另外研究表明,鞭毛虫能够动态适应白蚁饮食的变化,它们对木质纤维素的降解有着明确的分工。Jasso-Selles等[14]分别采用光镜、单细胞分离及高通量扩增子测序方法,鉴定了金黄异白蚁Heterotermes aureus后肠原生生物群落的多样性,发现了4个鞭毛虫新种Pseudotrichonympha aurea、Holomastigotoides aureus、H. oxyrhynchu及Cononympha aurea,同时发现同种白蚁个体间的微生物群落构成极其相似,仅一些个体会缺少C. aurea或H. oxyrhynchus。Mo和Universita等[15]对北美散白蚁R. flavipes进行高压氧处理,杀死了其肠道内的鞭毛虫,尽管白蚁能继续取食,但仅能存活几周。不同种白蚁含有的鞭毛虫种的数目有差异,但每种白蚁肠道中拥有特定的鞭毛虫种,它们对各自的宿主表现一定的特异性[16]。
2 共生真菌 约3000万年前,在非洲撒哈拉沙漠以南地区,大白蚁亚科Macrotermitinae的白蚁开始与蚁巢伞属真菌Termitomyces形成共生关系[17]。由于能在菌圃中培养真菌,这类白蚁被称为培菌白蚁,是旧世界热带地区主要的分解者之一[18]。培菌白蚁包括11个属约330种,能与约40种蚁巢伞形成共生关系[19-20]。
在共生模式中,高龄工蚁从野外采集植物材料带回巢中;低龄工蚁取食被带回的木屑以及菌丝瘤(nodules),排出粪便构成新鲜菌圃(fungus comb),这个过程中木质素的结构便发生了变化;然后,新鲜菌圃被不断堆积并被蚁巢伞属真菌发酵,高龄工蚁再取食发酵后的菌圃[21]。随着研究的不断深入,共生真菌与白蚁之间关系的假说被不断提出,真菌的作用主要有以下4种:(1)降解木质素以促进纤维素的降解;(2)提供一些木质纤维素相关的降解酶类,与白蚁自身分泌的酶协同作用;(3)增加白蚁食物的N:C,为白蚁提供营养,尤其是氮源,使得白蚁的取食范围更加广泛;(4)少数研究者认为共生真菌只为白蚁提供了水和热量[22]。
诸多研究表明,蚁巢伞可以分泌相关降解酶类促进木质纤维素的降解,不同基质对其产酶种类有影响。Bashir等[23]分别以纤维素和乳糖为基质培养蚁巢伞Termitomyces OE147后共得到29种酶,其中大部分为纤维素和半纤维素水解酶类。da Costa等[24]检测到菌圃的菌丝瘤含有39种酶,包括纤维素、半纤维素、木质素、果胶、淀粉和阿拉伯半乳聚糖等相关降解酶类。Gangwar等[25]将Termitomyces sp. OE147液体培养后,检测到培养液中含有漆酶、纤维二糖脱氢酶和过氧化物酶,同时在蚁巢伞的液体培养液中检测到大量的漆酶(含量高达1160 U/L)和微量的木质素过氧化物酶与锰过氧化物酶。Banerjee等[26]确认了T. clypeatus中含有的纤维二糖脱氢酶的结构。One等[27]将T. eurrrhizus分别接种到3种软木材料和2种硬木材料上,发现真菌可降解木材表面材料,但效果微弱。Gomathi等[28]测定了经历不同生长天数、不同种蚁巢伞属真菌的纤维素酶含量,发现培养12 d后,酶的含量均明显提高,培养的8种蚁巢伞均能产生纤维素酶。作者所在的课题组将固体和液体培养的蚁巢伞接种于杨树木屑、栎树叶等混合而成的基质中,不同时间后测定基质材料的纤维素、半纤维素、木质素等成分含量,发现蚁巢伞对木质纤维素有一定的降解能力[29]。
除蚁巢伞属真菌外,还有其他可以降解木质纤维素的真菌,如Bajya等[30]从胖身土白蚁O. obesus后肠中分离出构巢曲霉Aspergillus nidulans,能使刚果红变色,进而推测它也能帮助白蚁降解纤维素。
3 共生细菌 白蚁肠道内部有大量细菌定居,肠道细菌帮助白蚁降解木质纤维素的机制仍是一个有待解决的问题。如果消除肠道内的细菌,白蚁则不能存活,这说明肠道细菌对白蚁维持正常生存是十分必要的。
3.1 低等白蚁 除鞭毛虫外,低等白蚁肠道中还有许多细菌和以产甲烷菌为代表的各种古细菌[31]。细菌以螺旋体门为主,在食木白蚁后肠内螺旋体门细菌数量可占原核生物一半,可以与鞭毛虫共生,但大多数游离在白蚁后肠体液中。许多其他细菌和古细菌也与鞭毛虫形成共生关系,主要位于鞭毛虫细胞质和外表面[5]。Huang等[32]测定了北美散白蚁R. ?avipes肠道细菌的多样性,发现其肠道中细菌种类十分丰富,螺旋体门占优势(37.4%),另外包括迷踪菌门、厚壁菌门、疣微菌门、变形菌门的细菌。随着分离培养技术的不断成熟,越来越多产木质纤维素酶类的细菌被成功分离出来(表 1)。
表 1. 不同种低等白蚁肠道细菌及其木质纤维素降解功能 Table 1. Bacteria in guts of different lower termites and their functions in degradation of lignocellulose
Lower termites | Isolated bacteria from guts | Functions | Enzymes | References |
R. chinensis | Enterobacter hormaechei, Bacillus licheniformis | Lignin degradation | LiP (278 U/L, 256 U/L respectively) | Zhou[33] |
Microcerotermes diversus | B. licheniformis, Ochrobactrum intermedium, Microbacterium paludicola | Lignin degradation | LiP | Azizi-Shotorkhoft[34] |
Coptotermes heimi | B. atrophaeus, B. pumilus, B. licheniformis, B. amyloliquefaciens, B. coagulans, B. megaterium | Cellulose degradation | NM | Nidhi[35] |
Mastotermes darwiniensis | Cellulosimicrobium variabile sp. nov. | Cellulose and xylan degradation | NM | Bakalidou[36] |
Heterotermes sp. | Bacillus sp. | Cellulose and cellose degradation | Cellulose (3.71 U/mg), Cellobiase (4.17 U/mg) | Sreena[37] |
Cryptotermes brevis | Bacillus sp. BMP01 | Carboxymethylcellulose and xylan degradation | Carboxymethylcellulase (0.25 U/mL), Xylanase (0.21 U/mL) | Tsegaye[38] |
Ochrobactrum oryzae BMP03 | Lignin degradation | Laccase | ||
C. curvignathus | Bacillus sp., Lysinibacillus sp., Acinetobacter sp. | Lignin degradation | LiP, MnP, Laccase | Ayeronfe[39] |
NM: not mentioned. |
表选项
3.2 高等白蚁 高等白蚁食性较低等白蚁复杂,包括植物、真菌、腐殖质、草食动物粪便和土壤等。高等白蚁肠道中缺少原生生物,主要利用细菌和古细菌等微生物降解木质纤维素[40]。不同亚科高等白蚁肠道中的细菌组成不同,如象白蚁亚科肠道中螺旋体门占优势,其次是厚壁菌门、拟杆菌门和放线菌门;白蚁亚科的优势门为变形菌门,其次是厚壁菌门、放线菌门和拟杆菌门;大白蚁亚科的肠道中,螺旋体门占优势,其次是拟杆菌门和变形菌门;尖白蚁亚科肠道中厚壁菌门和变形菌门占优势,其次是放线菌门和拟杆菌门(图 2)。
图 2 不同高等白蚁肠道细菌结构比较图 Figure 2 Comparison of the bacterial structure in the intestinal tract of different higher termites. A: Nasutitermitinae[54]; B: Termitinae[55]; C: Macrotermitinae[56]; D: Apicotermitinae[55]. |
图选项 |
3.2.1 培菌高等白蚁: 培菌高等白蚁可利用蚁巢伞属真菌降解木质纤维素,其肠道中也有许多能降解木质纤维素的细菌,但优势菌群以拟杆菌门和厚壁菌门为主。Saria Otani等[41]在非洲南部采集了大白蚁亚科3个属(大白蚁属Macrotermes、小白蚁属Microtermes、土白蚁属Odontotermes)的33个菌圃,分析白蚁肠道菌群后得到27门细菌,其中拟杆菌门、厚壁菌门、螺旋体门、变形菌门、浮霉菌门占了93.5%;同时,发现年份对白蚁肠道微生物种类的影响较小,但不同属白蚁之间细菌优势种有较大差异,如小白蚁属肠道中的螺旋体门含量多于大白蚁属和土白蚁属,而小白蚁属肠道中的浮霉菌属相对较少。作者所在的课题组比较了不同虫龄黑翅土白蚁O. formosanus工蚁后肠细菌构成和理化指标后表明,从刚蜕皮到低龄,工蚁肠道内细菌总量会增加,而转变成高龄工蚁后,细菌含量又会减少;另外,摄入的食物和肠道微环境会影响肠道微生物构成[42]。Hu等[43]对土白蚁属白蚁Odontotermes sp.肠道内细菌的宏基因组进行分析后,发现白蚁肠道内含有许多酶,特别是降解木质纤维素的酶。Sreena等[37]从土白蚁属白蚁Odontotermes sp.的肠道中分离出2株能产生纤维素酶和纤维二糖酶的芽孢杆菌Bacillus sp.,优化生长条件后,产生的纤维素酶活性可达2.98 U/mg和5.06 U/mg,产生的纤维二糖酶活性分别可达3.42 U/mg和6.01 U/mg。Batool等[44]从奥贝斯小白蚁Microtermes obesi肠道中分离出能降解纤维素和木聚糖的纤维单孢菌Cellulomonas sp.,其分泌的纤维素酶和木聚糖酶在50 ℃、pH=8时活性最高,这两种酶可降解玉米秸秆,最终产物为乙醇和乳酸。
3.2.2 食木高等白蚁: 食木高等白蚁既无低等白蚁肠道内的鞭毛虫,也无培菌白蚁的共生真菌,只能利用肠道内各种各样的细菌帮助降解木质纤维素,象白蚁亚科中的绝大部分种类属于这一类群。螺旋体门、纤维杆菌门、TG3菌门是食木高等白蚁后肠中的3大优势菌群,与培菌白蚁肠道细菌的组成有很大差别,这可能由食性引起。Warnecke等[45]通过对埃夫拉塔象白蚁Nasutitermes ephratae后肠细菌群落的宏基因组分析,发现螺旋体门和纤维杆菌属细菌存在大量纤维素和木聚糖水解基因。Tokuda等[46]认为高山象白蚁N. takasagoensis肠道中的螺旋体门细菌在木质纤维素降解过程中起到了十分重要的作用。Kitamoto等[47]从高山象白蚁N. takasagoensis后肠中得到了能高效表达木聚糖酶的基因。对象白蚁亚科肠道微生物的研究主要偏重于工蚁,但Diouf等[48]分析比较了N. arborum的兵蚁和工蚁后发现它们的优势菌群都是螺旋体门,另外还包含了拟杆菌门和TG3门,大部分肠道内的细菌不能分离培养,都是通过垂直传播获得的。该亚科白蚁的肠道中也有许多能分解纤维素的细菌。Arneodo等[49]的研究表明柯恩氏菌属Cohnella存在于鹰喙象白蚁N. aquilinus和具角象白蚁N. corniger肠道内,该属细菌被证明可以高效降解纤维素。
3.2.3 食土或腐殖质白蚁: 由于食土或腐殖质白蚁食性的特殊性,它们对木质纤维素的降解能力远不及培菌白蚁和食木白蚁,高等白蚁中的绝大多数属于该类群,包括尖白蚁亚科、白蚁亚科以及象白蚁亚科的少部分种。Rossmassler等[50]采用宏基因组分析法比较了食土白蚁Cubitermes ugandensis后肠P1、P3和P4这3个区段的细菌群落结构,发现P1和P2区段主要由厚壁菌门构成,其次是拟杆菌门,P4区段主要由厚壁菌门和拟杆菌门组成,它们的含量十分接近,从P1到P4区段,变形菌门含量不断增加;对食腐殖质的Termes hospes来说,P1和P2区段主要由厚壁菌门构成,其次是螺旋体门,P4区段主要由厚壁菌门和拟杆菌门组成,它们的含量也十分接近;对于Neocapritermes taracua来说,P1区螺旋体门含量显著减少,P4区变形菌门显著增加。Sakolvaree等[51]从白蚁亚科T. propinquus肠道中分离出7株细菌,其中2株有很高的纤维素酶活性,经16S rRNA鉴定为B. amyloliquefacien和B. methylotrophicus。Liu等[52]从高等白蚁Globitermes brachycerastes肠道中分离出22株具有β-木糖苷酶活性的细菌,其中4株还具有α-阿拉伯糖苷酶活性。Mikaelyan等[53]研究了白蚁亚科两种白蚁肠道不同区段的细菌结构,发现不同区段的细菌组成不同,但不同种白蚁的同个区段细菌组成相近,同时发现pH、H2、O2等会影响菌群的结构,最终导致不同区段对腐殖质降解强度上的差异。
4 共生古细菌 白蚁肠道中含有的原核生物细胞数目达106–108个,绝大多数是细菌,古细菌的含量仅为0–10%[57]。产甲烷菌是白蚁肠道中研究最多的古细菌,属于广古细菌门Euryarchaeota,包括甲烷八叠球菌目Methanosarcinales、甲烷微菌目Methanomicrobiales、甲烷短杆菌目Methanobacteriales和Methanomassiliicoccales[31, 58]。白蚁能利用其肠道共生微生物向大气中释放甲烷,早期的研究估高了甲烷产量,甚至认为白蚁是大气甲烷的重要来源,是导致全球温室效应的重要因素。但实际上,白蚁每年产生的甲烷少于20 Tg,甚至可能少于10 Tg[59]。
1932年,Cook首先推测湿木白蚁Z. nevadensis会释放甲烷或者氢气,因为当氧气耗尽时,白蚁会产生一系列气体[60]。40年后,Breznak[61]用气相色谱检测到几种食木白蚁释放的甲烷气体,由此证实了该假设。而后,Breznak[62]又指出,如果等体重换算,白蚁产生的甲烷可以与反刍动物等量。这一观点极大地激发了研究者的兴趣,白蚁也被认为是甲烷的产生者。接着,诸多研究表明几乎所有白蚁能够产生甲烷[63-68]。而且食腐殖质的白蚁排放甲烷的速率普遍高于食木白蚁[31]。
低等白蚁后肠中含有的产甲烷菌绝大部分只属于甲烷短杆菌属Methanobrevibacter,而高等白蚁后肠的产甲烷菌种类更加丰富,已包含4个目。Shi等[69]利用16S RNA测序法比较了5种食木白蚁肠道中的古细菌种类,发现食木高等白蚁肠道中的古细菌种类较低等白蚁多,其中Methanoplasmatales的数量最多(37.5%–60.3%)。白蚁肠道古细菌多样性不仅取决于白蚁种类,还与其栖息地的环境密切相关[65]。
5 白蚁肠道共生微生物的作用 5.1 固氮作用 木质纤维素含氮量极低,仅为0.03%–0.10%,严重影响了木食性白蚁的生长发育。但实际上,由于肠道微生物参与氮的固定、循环与更新,使得白蚁的含氮量与其他动物相近(约11%)[70-71]。肠道微生物的固氮作用使得蚁巢的氮平衡得以维持[72]。
Cleveland[73]用脱氮材料饲养白蚁,一年多后发现白蚁发育正常,于是首先证明白蚁体内的氮并非来自食物。Peklo[74]猜测昆虫体内含有固氮细菌,但未能通过试验证明。Benemann和Breznak[61, 75]运用乙炔还原法ARA证明了白蚁存在固氮作用。French[76]指出白蚁固氮作用由肠道细菌引起。随后,研究表明许多种类白蚁能够利用细菌固氮,其肠道内的固氮细菌也逐渐被分离鉴定,但大部分重要的固氮微生物仍然不能被成功分离培养[77-78]。白蚁肠道内的固氮细菌主要是拟杆菌门、螺旋体门和梭菌门,不同品级白蚁的固氮活性不同,工蚁是木质纤维素主要的降解者,其固氮作用明显高于兵蚁[79]。对白蚁固氮作用的研究可以分成两大类:一是在密闭容器内饲养白蚁,通过乙炔法检测其产生的气体,二是通过分子生物学手段,筛查相关固氮酶基因。固氮酶系统中,nifH基因编码铁蛋白,且高度保守,因此该基因常被用于鉴定固氮菌,在白蚁固氮作用的研究中起到十分重要的作用[80]。
5.2 降解聚合物 木质纤维素的降解涉及一系列降解酶类,主要包括纤维素、半纤维素、木质素、果胶等降解酶类。降解纤维素需要一个复杂的酶系统,主要包括内切-β-1, 4-葡聚糖酶(Endo-β-1, 4-glucanase)、外切葡聚糖酶(Exoglucanses)、β-葡萄糖苷酶(β-glucosidase)。半纤维素的降解主要需要内切- β-1, 4-木聚糖酶(Endo-β-1, 4-xylanases)和β-1, 4-木糖苷酶(β-1, 4-xylosidase),此外,半纤维素的降解还需要木聚糖酯酶、α-葡糖醛酸酶(α-glucuronidases)、α-L-阿拉伯呋喃糖酶(α-L-arabinofuranosidase)和乙酰酯酶(acetylesterase)等辅助酶的作用。相对于纤维素和半纤维素,木质素的降解更加困难,越来越多的研究转向于产木质素酶类的微生物,需要的酶主要是木质素过氧化物酶(lignin peroxidases)、锰过氧化物酶(Mn peroxidases)、过氧化物酶VP和漆酶(laccases)。此外,还有一些辅助酶参与过氧化氢的产生,如纤维二糖脱氢酶(lignocellulose degradation)、乙二醛氧化酶(glyoxal oxidase)和芳基醇氧化酶(aryl-alcohol oxidase)、草酸脱羧酶(oxalate decarboxylase)等[81]。
白蚁后肠内的微生物能够帮助白蚁降解木质纤维素[40]。在低等白蚁后肠内,白蚁与其共生微生物协同降解木质纤维素,白蚁取食的木质颗粒(直径约为10–20 μm)和唾液腺中的酶混合后进入后肠,后肠的鞭毛虫可以吞噬木质颗粒,然后产生一系列糖苷水解酶,包括各种纤维素酶(外葡聚糖酶和内葡聚糖酶)和各种半纤维素酶(如木聚糖酶、阿拉伯糖苷酶、甘露糖苷酶),与宿主协同降解被吞噬的颗粒[82-83]。
高等白蚁肠道内没有鞭毛虫,需要借助其他微生物降解木质纤维素,如大白蚁亚科与蚁巢伞属真菌共生,它们可以在巢内培养蚁巢伞属真菌,利用真菌降解部分木质纤维素,但真菌的降解作用并不完全,后续仍需要肠道微生物的作用,而且白蚁-真菌-细菌三者之间具体的降解机制有待深入研究。有的高等白蚁可以通过食用经腐殖化作用的木材、食草动物的粪便或土壤获取营养。还有的高等食木白蚁肠道内没有鞭毛虫,也不与蚁巢伞属真菌共生,它们后肠则有许多能降解木质纤维素的细菌[48]。
5.3 产生乙酸 白蚁肠道细菌可以利用H2和CO2产生乙酸盐并释放能量,称为乙酸化过程,产生的乙酸盐可为白蚁的生命活动提供碳源。低等白蚁肠道内,鞭毛虫通过吞噬作用降解木质纤维素,产生乙酸盐、H2和CO2,肠道共生细菌则可以利用H2和CO2合成乙酸盐。Ohkuma等[84]采用同位素示踪法研究Hodotermopsis sjoestedti体内的乙酸化过程,发现该白蚁体内60%的乙酸化反应和所有的固氮均由其体内Eucomonympha属鞭毛虫的内共生细菌完成,该内共生菌属于螺旋体门。Graber和Breznak[85]也从狭颈动白蚁Z. angusticollis后肠中分离出一株螺旋体门细菌Treponema primitia,发现该菌不仅可利用简单的底物例如H2和CO2产生乙酸,还可利用多糖、双糖和甲氧基苯环类底物等简单化合物产生同型乙酸;研究还表明,该菌的生命活动可能依靠其他肠道微生物产生的叶酸,而且该菌能调节产酶种类以氧化应激[85]。高等食木白蚁也可进行乙酸化过程,如Warnecke等[45]从埃夫拉塔象白蚁N. ephratae后肠中检测到乙酸化过程,但其机制并不清楚。总的来讲,食木低等白蚁和高等白蚁的乙酸化过程归因于其肠道内的螺旋体门。
6 展望 木质纤维素在白蚁肠道中的降解过程十分复杂,涉及到诸多微生物、酶等。随着高通量测序等分子技术的逐渐成熟,研究者们在探索肠道共生微生物的多样性和功能方面取得了一些进展。同时,越来越多的肠道微生物被分离鉴定,但白蚁与微生物共生体系协同降解利用木质纤维素的作用机制仍有待深入研究。由于一些肠道微生物生存条件十分苛刻,目前无法实现体外培养。因此,提高分离培养技术、制造类似白蚁体内的培养环境、优化适合微生物生存的培养基质等对阐明白蚁与微生物共生体系协同降解利用木质纤维素的作用机制以及开发利用相关木质纤维素酶类无疑具有十分重要的意义。
References
[1] | Chandel AK, Singh OV. Weedy lignocellulosic feedstock and microbial metabolic engineering:advancing the generation of 'Biofuel'. Applied Microbiology And Biotechnology, 2011, 89(5): 1289-1303. DOI:10.1007/s00253-010-3057-6 |
[2] | Nasirian N, Almassi M, Minaei S, Widmann R. Development of a method for biohydrogen production from wheat straw by dark fermentation. International Journal of Hydrogen Energy, 2011, 36(1): 411-420. DOI:10.1016/j.ijhydene.2010.09.073 |
[3] | Wong LJ, H'ng PS, Wong SY, Lee SH, Lum WC, Chai EW, Wong WZ, Chin KL. Termite digestomes as a potential source of symbiotic microbiota for lignocelluloses degradation:a review. Pakistan Journal of Biological Sciences, 2014, 17(8): 956-963. DOI:10.3923/pjbs.2014.956.963 |
[4] | Varm A, Kolli BK, Paul J, Saxena S, K?nig H. Lignocellulose degradation by microorganisms from termite hills and termite guts:a survey on the present state of art. FEMS Microbiology Reviews, 1994, 15(1): 9-28. DOI:10.1111/j.1574-6976.1994.tb00120.x |
[5] | Brune A. Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology, 2014, 12(3): 168-180. DOI:10.1038/nrmicro3182 |
[6] | Li JJ, Sun XX, Ni JF. Overview of research methods on intestinal microflora of termites. Biotic Resources, 2017, 39(4): 247-255. (in Chinese) 李静静, 孙新新, 倪金凤. 白蚁肠道微生物研究方法概述. 生物资源, 2017, 39(4): 247-255. |
[7] | Zhou J, Duan JW, Gao MK, Wang Y, Wang XH, Zhao K. Diversity, roles, and biotechnological applications of symbiotic microorganisms in the gut of termite. Current Microbiology, 2019, 76(6): 755-761. DOI:10.1007/s00284-018-1502-4 |
[8] | Chen W, Shi Y, Peng JX, Hong HZ, Yang H. Phylogenetic diversity analysis and in situ hybridization of symbiotic Oxymonad flagellates in the hindgut of Reticulitermes chinensis Snyder. Acta Ecologica Sinica, 2011, 31(18): 5332-5340. (in Chinese) 陈文, 石玉, 彭建新, 洪华珠, 杨红. 黑胸散白蚁肠道共生锐滴虫目鞭毛虫的多样性分析与原位杂交鉴定. 生态学报, 2011, 31(18): 5332-5340. |
[9] | Leidy J. On intestinal parasites of Termes flavipes. Proceedings of the Academy of Natural Sciences of Philadelphia, 1877, 29: 146-149. |
[10] | Cleveland LR. Some problems which may be studied by oxygenation. Science, 1926, 63(1623): 168-170. DOI:10.1126/science.63.1623.168 |
[11] | Yamin MA. Cellulose metabolism by the flagellate Trichonympha from a termite is independent of endosymbiotic bacteria. Science, 1981, 211(4477): 58-59. DOI:10.1126/science.211.4477.58 |
[12] | 宋艳秋, 崔璐璐, 张艳琼, 邱正勇, 杨红. 四种散白蚁肠道共生鞭毛虫多样性的比较研究//湖北省暨武汉微生物学会会员代表大会暨学术年会论文摘要集. 武汉: 湖北省微生物学会, 武汉微生物学会, 2013: 58. |
[13] | Duarte S, Duarte M, Borges PAV, Nunes L. Dietary-driven variation effects on the symbiotic flagellate protist communities of the subterranean termite Reticulitermes grassei Clément. Journal of Applied Entomology, 2017, 141(4): 300-307. DOI:10.1111/jen.12331 |
[14] | Jasso-Selles DE, De Martini F, Freeman KD, Garcia MD, Merrell TL, Scheffrahn RH, Gile GH. The parabasalid symbiont community of Heterotermes aureus:molecular and morphological characterization of four new species and reestablishment of the genus Cononympha. European Journal of Protistology, 2017, 61: 48-63. DOI:10.1016/j.ejop.2017.09.001 |
[15] | Ebert A, Brune A. Hydrogen concentration profiles at the oxic-anoxic interface:a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Applied and Environmental Microbiology, 1997, 63(10): 4039-4046. DOI:10.1128/AEM.63.10.4039-4046.1997 |
[16] | Yamin MA. Flagellates of the orders Trichomonadida Kirby, Oxymonadida Grassé, and hypermastigida grassi and Foà reported from lower termites (Isoptera families Mastotermitidae, Kalotermitidae, Hodotermitidae, Termopsidae, Rhinotermitidae, and Serritermitidae) and from the wood-feeding roach Cryptocercus (Dictyoptera:Cryptocercidae). Sociobiology, 1979, 4: 1-120. |
[17] | Da Costa RR, Vreeburg SME, Shik JZ, Aanen DK, Poulsen M. Can interaction specificity in the fungus-farming termite symbiosis be explained by nutritional requirements of the fungal crop?. Fungal Ecology, 2019, 38: 54-61. DOI:10.1016/j.funeco.2018.08.009 |
[18] | Um S, Fraimout A, Sapountzis P, Oh DC, Poulsen M. The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi.. Scientific Reports, 2013, 3(1): 3250. DOI:10.1038/srep03250 |
[19] | Kirk PM, Cannon PF, David JC, Stalpers JA. Ainsworth & Bisby's dictionary of the fungi. 9th ed. Wallingford: CABI, 2001: 1-655. |
[20] | Nobre T, Eggleton P, Aanen DK. Vertical transmission as the key to the colonization of Madagascar by fungus-growing termites?. Proceedings of The Royal Society B: Biological Sciences, 2010, 277(1680): 359-365. DOI:10.1098/rspb.2009.1373 |
[21] | Li HJ, Yelle DJ, Li C, Yang MY, Ke J, Zhang RJ, Liu Y, Zhu N, Liang SY, Mo XC, Ralph J, Currie CR, Mo J. Lignocellulose pretreatment in a fungus-cultivating termite. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(18): 4709-4714. DOI:10.1073/pnas.1618360114 |
[22] | Korb J, Aanen DK. The evolution of uniparental transmission of fungal symbionts in fungus-growing termites (Macrotermitinae). Behavioral Ecology and Sociobiology, 2003, 53(2): 65-71. DOI:10.1007/s00265-002-0559-y |
[23] | Bashir H, Gangwar R, Mishra S. Differential production of lignocellulolytic enzymes by a white rot fungus Termitomyces sp. OE147 on cellulose and lactose.. Biochimica et Biophysica Acta(BBA)-Proteins and Proteomics, 2015, 1854(10): 1290-1299. DOI:10.1016/j.bbapap.2015.07.005 |
[24] | Da Costa RR, Hu HF, Pilgaard B, Vreeburg SMN, Schückel J, Pedersen KSK, Kra?un SK, Busk PK, Harholt J, Sapountzis P, Lange L, Aanen DK, Poulsen M. Enzyme activities at different stages of plant biomass decomposition in three species of fungus-growing termites. Applied and Environmental Microbiology, 2018, 84(5): e01815-e01817. |
[25] | Gangwar R, Rasool S, Mishra S. Evaluation of cellobiose dehydrogenase and laccase containing culture fluids of Termitomyces sp. OE147 for degradation of Reactive blue 21. Biotechnology Reports, 2016, 12: 52-61. DOI:10.1016/j.btre.2016.10.002 |
[26] | Banerjee S, Roy A, Madhusudhan MS, Bairagya HR, Roy A. Structural insights of a cellobiose dehydrogenase enzyme from the basidiomycetes fungus Termitomyces clypeatus. Computational Biology and Chemistry, 2019, 82: 65-73. DOI:10.1016/j.compbiolchem.2019.05.013 |
[27] | Ono K, Hata T, Yoshimura T, Kinjo K. Wood decaying properties of the termite mushroom Termitomyces eurrhizus. Journal of Wood Science, 2017, 63(1): 83-94. DOI:10.1007/s10086-016-1588-x |
[28] | Gomathi V, Esakkiammal M, Thilagavathi SS, Ramalakshmi A. Lignocellulosic enzyme production by Termitomyces spp from termite garden. Universal Journal of Agricultural Research, 2019, 7(2): 100-111. DOI:10.13189/ujar.2019.070202 |
[29] | Wang CP, Liang SY, Yin XJ, Yu BT, Hu Y, Mo JC. Degradation of lignocellulose by Termitomyces. Chinese Journal of Applied Environment and Biology, 2019, 25(3): 729-735. (in Chinese) 王成盼, 梁世优, 殷学杰, 于保庭, 胡寅, 莫建初. 蚁巢伞对木质纤维素的降解作用. 应用与环境生物学报, 2019, 25(3): 729-735. |
[30] | Bajya DR, Arya D, Ranjith M, Lakharan MC, Raza SK. Isolation and identification of cellulose demoting symbionts from gut of subterranean termite, Odontotermes obesus. Indian Journal of Agricultural Sciences, 2015, 85(7): 970-972. |
[31] | Hongoh Y, Ohkuma M. Termite gut flagellates and their methanogenic and eubacterial symbionts//Hackstein JHP. (Endo)symbiotic Methanogenic Archaea.Netherlands: Springer, 2018. |
[32] | Huang XF, Chaparro JM, Reardon KF, Judd TM, Vivanco JM. Supplementing blends of sugars, amino acids, and secondary metabolites to the diet of termites (Reticulitermes flavipes) drive distinct gut bacterial communities. Microbial Ecology, 2016, 72(3): 497-502. |
[33] | Zhou HZ, Guo W, Xu B, Teng ZW, Tao DP, Lou YJ, Gao YH. Screening and identification of lignin-degrading bacteria in termite gut and the construction of LiP-expressing recombinant Lactococcus lactis. Microbial Pathogenesis, 2017, 112: 63-69. DOI:10.1016/j.micpath.2017.09.047 |
[34] | Azizi-Shotorkhoft A, Mohammadabadi T, Motamedi H, Chaji M, Fazaeli H. Isolation and identification of termite gut symbiotic bacteria with lignocellulose-degrading potential, and their effects on the nutritive value for ruminants of some by-products. Animal Feed Science and Technology, 2016, 221: 234-242. DOI:10.1016/j.anifeedsci.2016.04.016 |
[35] | Nidhi K, Gupta SK, Bura A, Gandhi A. Diversity of cellulose hydrolyzing bacteria from the gut of Coptotermes heimi (Rhinotermitidae). Asian Journal of Biological and Life Sciences, 2018, 7(1): 28-32. |
[36] | Bakalidou A, K?mpfer P, Berchtold M, Kuhnigk T, Wenzel M, K?nig H. Cellulosimicrobium variabile sp. nov., a cellulolytic bacterium from the hindgut of the termite Mastotermes darwiniensis. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(4): 1185-1192. |
[37] | Sreena CP, Resna NK, Sebastian D. Isolation and characterization of cellulase producing bacteria from the gut of termites (Odontotermes and Heterotermes Species). British Biotechnology Journal, 2015, 9(1): 1-10. |
[38] | Tsegaye B, Balomajumder C, Roy P. Isolation and characterization of novel lignolytic, cellulolytic, and hemicellulolytic bacteria from wood-feeding termite Cryptotermes brevis. International Microbiology, 2018, 22(1): 29-39. |
[39] | Ayeronfe F, Kassim A, Hung P, Ishak N, Syarifah S, Aripin A. Production of ligninolytic enzymes by coptotermes curvignathus gut bacteria. Environmental and Climate Technologies, 2019, 23(1): 111-121. DOI:10.2478/rtuect-2019-0008 |
[40] | Hongoh Y. Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cellular and Molecular Life Sciences, 2011, 68(8): 1311-1325. DOI:10.1007/s00018-011-0648-z |
[41] | Otani S, Hansen LH, S?rensen SJ, Poulsen M. Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment. Microbial Ecology, 2016, 71(1): 207-220. DOI:10.1007/s00248-015-0692-6 |
[42] | Li HJ, Dietrich C, Zhu N, Mikaelyan A, Ma B, Pi RX, Liu Y, Yang MY, Brune A, Mo JC. Age polyethism drives community structure of the bacterial gut microbiota in the fungus-cultivating termite Odontotermes formosanus. Environmental Microbiology, 2016, 18(5): 1440-1451. DOI:10.1111/1462-2920.13046 |
[43] | Hu HF, Da Costa RR, Pilgaard B, Schi?tt M, Lange L, Poulsen M. Fungiculture in termites is associated with a mycolytic gut bacterial community. mSphere, 2019, 4(3): e00165-19. |
[44] | Batool I, Gulfraz M, Asad MJ, Kabir F, Khadam S, Ahmed A. Cellulomonas sp. Isolated from termite gut for saccharification and fermentation of agricultural biomass. Bioresources, 2018, 13(1): 752-763. |
[45] | Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang XN, Hernández M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 2007, 450(7169): 560-565. DOI:10.1038/nature06269 |
[46] | Tokuda G, Mikaelyan A, Fukui C, Matsuura Y, Watanabe H, Fujishima M, Brune A. Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(51): E11996-E12004. |
[47] | Kitamoto M, Tokuda G, Watanabe H, Arioka M. Characterization of CBM36-containing GH11 endoxylanase NtSymX11 from the hindgut metagenome of higher termite Nasutitermes takasagoensis displaying prominent catalytic activity. Carbohydrate Research, 2019, 474: 1-7. DOI:10.1016/j.carres.2019.01.003 |
[48] | Diouf M, Hervé V, Mora P, Robert A, Frechault S, Rouland-Lefèvre C, Miambi E. Evidence from the gut microbiota of swarming alates of a vertical transmission of the bacterial symbionts in Nasutitermes arborum (Termitidae, Nasutitermitinae). Antonie van Leeuwenhoek, 2018, 111(4): 573-587. DOI:10.1007/s10482-017-0978-4 |
[49] | Arneodo JD, Etcheverry C, Thebe T, Babalola OO, Godoy MC, Talia P. Molecular evidence that cellulolytic bacterial genus Cohnella is widespread among Neotropical Nasutitermitinae from NE Argentina. Revista Argentina de Microbiología, 2019, 51(1): 77-80. |
[50] | Rossmassler K, Dietrich C, Thompson C, Mikaelyan A, Nonoh JO, Scheffrahn RH, Sillam-Dussès D, Brune A. Metagenomic analysis of the microbiota in the highly compartmented hindguts of six wood- or soil-feeding higher termites. Microbiome, 2015, 3: 56. DOI:10.1186/s40168-015-0118-1 |
[51] | Sakolvaree J, Deevong P. Isolation and characterization of cellulase producing bacteria from the gut of a higher termite, Termes propinquus//Proceedings of the Burapha University International Conference 2016, 28-29 July 2016. Bangsaen, Chonburi, Thailand, 2016. |
[52] | Liu CY, Zou G, Yan X, Zhou XG. Screening of multimeric β-xylosidases from the gut microbiome of a higher termite, Globitermes brachycerastes. International Journal of Biological Sciences, 2018, 14(6): 608-615. DOI:10.7150/ijbs.22763 |
[53] | Mikaelyan A, Meuser K, Brune A. Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood- and humus-feeding higher termites. FEMS Microbiology Ecology, 2017, 93(1): fiw210. DOI:10.1093/femsec/fiw210 |
[54] | Diouf M, Roy V, Mora P, Frechault S, Lefebvre T, Hervé V, Rouland-Lefevre C, Miambi E. Profiling the succession of bacterial communities throughout the life stages of a higher termite Nasutitermes arborum (Termitidae, Nasutitermitinae) using 16S rRNA gene pyrosequencing. PLoS One, 2015, 10(10): e0140014. DOI:10.1371/journal.pone.0140014 |
[55] | Grieco MB, Lopes FAC, Oliveira LS, Tschoeke DA, Popov CC, Thompson CC, Goncalves LC, Constantino R, Martins OB, Kruger RH, de Souza W, Thompson FL. Metagenomic analysis of the whole gut microbiota in Brazilian Termitidae termites Cornitermes cumulans, Cyrilliotermes strictinasus, Syntermes dirus, Nasutitermes jaraguae, Nasutitermes aquilinus, Grigiotermes bequaerti, and Orthognathotermes mirim. Current Microbiology, 2019, 76(6): 687-697. DOI:10.1007/s00284-019-01662-3 |
[56] | Otani S, Mikaelyan A, Nobre T, Hansen LH, Koné NA, S?rensen SJ, Aanen DK, Boomsma JJ, Brune A, Poulsen M. Identifying the core microbial community in the gut of fungus-growing termites. Molecular Ecology, 2014, 23(18): 4631-4644. |
[57] | Hongoh Y. Diversity and genomes of uncultured microbial symbionts in the termite gut. Bioscience, Biotechnology, and Biochemistry, 2010, 74(6): 1145-1151. DOI:10.1271/bbb.100094 |
[58] | Paul K, Nonoh JO, Mikulski L, Brune A. "Methanoplasmatales, " Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Applied and Environmental Microbiology, 2012, 78(23): 8245-8253. DOI:10.1128/AEM.02193-12 |
[59] | Tsuruta A, Aalto T, Backman L, Hakkarainen J, van der Laan-Luijkx IT, Krol MC, Spahni R, Houweling S, Laine M, Dlugokencky E, Gomez-Pelaez AJ, van der Schoot M, Langenfelds R, Ellul R, Arduini J, Apadula F, Gerbig C, Feist DG, Kivi R, Yoshida Y, Peters W. Global methane emission estimates for 2000-2012 from CarbonTracker Europe-CH4 v1.0.. Geoscientific Model Development, 2017, 10(3): 1261-1289. DOI:10.5194/gmd-10-1261-2017 |
[60] | Cook SF. The respiratory gas exchange in Termopsis nevadensis. Biological Bulletin, 1932, 63(2): 246-257. DOI:10.2307/1537242 |
[61] | Breznak JA, Brill WJ, Mertins JW, Coppel HC. Nitrogen fixation in termites. Nature, 1973, 244(5418): 577-580. DOI:10.1038/244577a0 |
[62] | Breznak JA. Symbiotic relationships between termites and their intestinal microbiota. Symposia of the Society for Experimental Biology, 1975(29): 559-580. |
[63] | Brauman A, Kane MD, Labat M, Breznak JA. Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science, 1992, 257(5075): 1384-1387. |
[64] | Deevong P, Hattori S, Yamada A, Trakulnaleamsai S, Ohkuma M, Noparatnaraporn N, Kudo T. Isolation and detection of Methanogens from the gut of higher termites. Microbes and Environments, 2004, 19(3): 221-226. |
[65] | Shizato N, Matsumoto T, Yamaoka I, Oshima T, Yamagishi A. Methanogenic symbionts and the locality of their host lower termites. Microbes and Environments, 2001, 16(1): 43-47. |
[66] | Gomathi V, Ramasamy K, Reddy MRVP, Ramalakshmi A, Ramanathan A. Methan emission by gut symbionts of termites. Academic Journal of Plant Sciences, 2009, 2(3): 189-194. |
[67] | Leadbetter JR, Crosby LD, Breznak JA. Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Archives of Microbiology, 1998, 169(4): 287-292. DOI:10.1007/s002030050574 |
[68] | Ohkuma M, Noda S, Horikoshi K, Kudo T. Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus. FEMS Microbiology Letters, 1995, 134: 45-50. DOI:10.1111/j.1574-6968.1995.tb07912.x |
[69] | Shi Y, Huang Z, Han S, Fan S, Yang H. Phylogenetic diversity of Archaea in the intestinal tract of termites from different lineages. Journal of Basic Microbiology, 2015, 55(8): 1021-1028. DOI:10.1002/jobm.201400678 |
[70] | Breznak JA. Intestinal microbiota of termites and other xylophagous insects. Annual Review of Microbiology, 1982, 36: 323. |
[71] | Cowling EB, Merrill W. Nitrogen in wood and its role in wood deterioration. Canadian Journal of Botany, 1966, 44(11): 1539-1554. DOI:10.1139/b66-167 |
[72] | Vecherskii MV, Kostina NV, Gorlenko MV, Dobrovol' skaya TG, Umarov MM. Specific features of nitrogen fixation in the termite Reticulitermes lucifugus. Biology Bulletin, 2008, 35(5): 446-451. DOI:10.1134/S1062359008050026 |
[73] | Cleveland LR. The method by which Trichonympha campanula, a protozo?n in the intestine of termites, ingests solid particles of wood for food. The Biological Bulletin, 1925, 48(4): 282-288. DOI:10.2307/1536573 |
[74] | Peklo J. Symbiosis of Azotobacter with insects. Nature, 1946, 158(4022): 795-796. |
[75] | Benemann JR. Nitrogen fixation in termites. Science, 1973, 181(4095): 164-165. DOI:10.1126/science.181.4095.164 |
[76] | French JRJ, Turner GL, Bradbury JF. Nitrogen fixation by bacteria from the hindgut of termites. Journal of General Microbiology, 1976, 95(2): 202-206. DOI:10.1099/00221287-95-2-202 |
[77] | Potrikus CJ, Breznak JA. Nitrogen-fixing Enterobacter agglomerans Isolated from guts of wood-eating termites. Applied and Environmental Microbiology, 1977, 33(2): 392-399. DOI:10.1128/AEM.33.2.392-399.1977 |
[78] | Lilburn TG, Kim KS, Ostrom NE, Byzek KR, Leadbetter JR, Breznak JA. Nitrogen fixation by symbiotic and free-living Spirochetes. Science, 2001, 292(5526): 2495-2498. DOI:10.1126/science.1060281 |
[79] | Sapountzis P, De Verges J, Rousk K, Cilliers M, Vorster BJ, Poulsen M. Potential for nitrogen fixation in the fungus-growing termite symbiosis. Frontiers in Microbiology, 2016, 7: 1993. |
[80] | Zehr JP, Jenkins BD, Short SM, Steward GF. Nitrogenase gene diversity and microbial community structure:a cross-system comparison. Environmental Microbiology, 2003, 5(7): 539-554. DOI:10.1046/j.1462-2920.2003.00451.x |
[81] | Manavalan T, Manavalan A, Heese K. Characterization of lignocellulolytic enzymes from white-rot fungi. Current Microbiology, 2015, 70(4): 485-498. DOI:10.1007/s00284-014-0743-0 |
[82] | Ni JF, Tokuda G. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnology Advances, 2013, 31(6): 838-850. DOI:10.1016/j.biotechadv.2013.04.005 |
[83] | Nakashima K, Watanabe H, Saitoh H, Tokuda G, Azuma JI. Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochemistry and Molecular Biology, 2002, 32(7): 777-784. DOI:10.1016/S0965-1748(01)00160-6 |
[84] | Ohkuma M, Noda S, Hattori S, Iida T, Yuki M, Starns D, Inoue JI, Darby AC, Hongoh Y. Acetogenesis from H2 plus CO2 and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulolytic protist. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(33): 10224-10230. |
[85] | Graber JR, Breznak JA. Physiology and nutrition of Treponema primitia, an H2/CO2-acetogenic spirochete from termite hindguts. Applied and Environmental Microbiology, 2004, 70(3): 1307-1314. DOI:10.1128/AEM.70.3.1307-1314.2004 |