未建华, 李净净, 倪金凤
山东大学微生物技术国家重点实验室, 山东 青岛 266000
收稿日期:2018-10-29;修回日期:2019-01-05;网络出版日期:2019-01-15
基金项目:国家自然科学基金(31272370)
*通信作者:倪金凤, Tel/Fax:+86-532-58631564, E-mail:jinfgni@sdu.edu.cn.
摘要:昆虫共生微生物是一种特殊的微生物资源,其中放线菌在昆虫肠道、体表和巢穴中广泛分布。近年来,人们从培菌昆虫来源的放线菌中分离得到多种新型化合物,可以选择性抑制菌圃的致病真菌,部分还对植物致病真菌、昆虫致病真菌、人类病原菌和癌细胞有抑制活性。因此,研究培菌昆虫相关微生物不仅有助于了解宿主与微生物的共生机制,还能发掘新的活性物质,用于生物农药、生物医药的开发。本文对培菌昆虫来源放线菌次级代谢产物的研究进展进行了综述。
关键词:培菌昆虫放线菌次级代谢产物
Research progress in secondary metabolites from fungus-growing insects associated actinomycetes
Jianhua Wei, Jingjing Li, Jinfeng Ni
State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, Shandong Province, China
Received: 29 October 2018; Revised: 5 January 2019; Published online: 15 January 2019
*Corresponding author: Jinfeng Ni, Tel/Fax: +86-532-58631564; E-mail: jinfgni@sdu.edu.cn.
Foundation item: Supported by the National Natural Science Foundation of China (31272370)
Abstract: Insect symbiotic microbes are a group of special microbial resources. The actinomycetes widely exist in the insect intestines, cuticle or the nest. Some of fungus-growing insects associated actinomycetes can produce secondary metabolites that inhabit pathogenic microorganisms of the insects, plants or human tumor cells. Thus, the research on insect symbiotic actinomycetes not only can facilitate understanding of the symbiotic mechanism between insects and symbionts, but also explore new bioactive compounds for the development of biological pesticides and medicines. This review summarizes the advances in the study on the secondary metabolites from fungus-growing insects associated actinomycetes.
Keywords: fungus-growing insectsactinomycetessecondary metabolites
放线菌次级代谢产物是一类具有药用价值的生物活性物质,与人类的生产和生活息息相关,多种农药成分和抗生素最初来源于放线菌的次级代谢产物。应用于人类的抗生素中,约70%来源于放线菌;从放线菌中分离得到的化合物还可以代替化学农药用作除草剂、杀虫剂;一些放线菌可以产生某种化学物质杀死昆虫致病菌,降低有益昆虫的死亡率。
在长期的进化中,一些昆虫培育真菌作为食物,这一类昆虫称为培菌昆虫。培菌昆虫肠道、体表和巢穴这一特殊生境蕴含着多种多样的微生物,其中放线菌占据着较为重要的部分。1999年,Cameron等从培菌蚂蚁切叶蚁表皮中分离出一株链霉菌,发现其可以抑制菌圃的致病真菌Escovopsis[1]。这一研究成果表明培菌昆虫相关放线菌可以分泌活性物质抑制菌圃致病菌,从而保护共生真菌,初步揭示了培菌昆虫-放线菌-真菌三者的共生机制,同时掀起了昆虫相关放线菌的研究热潮。有关昆虫共生真菌、细菌及放线菌来源次级代谢产物的研究已有介绍[2],本文重点综述了近年来培菌昆虫来源放线菌次级代谢产物的研究。
1 培菌昆虫 昆虫属于节肢动物门,种类繁多,分布广泛。在长期进化过程中,类似于人类种植庄稼,一些昆虫通过某种方式对特定真菌进行接种、培育、收获,并作为幼虫的食物[3],这类昆虫称为培菌昆虫,包括培菌蚂蚁、培菌甲虫和培菌白蚁,其菌圃共生真菌和常见病原真菌见表 1。培菌昆虫与其共生真菌间关系密切且复杂,真菌对木质纤维素降解能力强,可以帮助昆虫消化木质纤维素等食物;此外,昆虫及其共生微生物可以产生有抑菌活性的次级代谢产物,保护共生真菌免受外来真菌的感染[4]。
表 1. 培菌昆虫及其共生真菌和致病真菌 Table 1. The fungal cultivars and pathogenic fungi of fungus-growing insects
Insects | Cultivar | Pathogen |
Fungus-growing ants | Basidiomycota | Escovopsis, Fusarium |
Fungus-growing beetles | Entomocorticium | Ophiostoma minus |
Fungus-growing termites | Termitomyces | Metarhizium, Beauveria, Xylaria, Trichoderma, Pseudoxylaria |
表选项
1.1 培菌蚂蚁 蚂蚁是一种社会性昆虫,种群内分工明确,蚁后负责繁殖后代,工蚁负责采集食物喂食蚁后和幼虫,兵蚁负责保卫蚁巢。切叶蚁是一种培菌蚂蚁,它们从作物上切下叶子,在叶片上培育担子菌[5]。共生真菌是蚂蚁幼虫的唯一食物来源,同时在没有其他食物来源时为成虫补充食物,满足切叶蚁的基本营养需求。除切叶蚁外还有其他培菌蚂蚁,如Apterostigma dentigerum和Trachymyrmex cornetzi等。培菌蚂蚁与真菌的共生体系容易受到病原真菌Escovopsis的侵染[6]。Basanta等从Escovopsis分离出的聚酮类化合物大黄素emodin对蚂蚁共生真菌和链霉菌有强抑制作用[7],同时蚂蚁共生放线菌能够分泌生物活性物质抑制致病菌(表 2)。总之,放线菌通过抑制致病真菌,在维持昆虫与菌圃稳态中发挥着重要作用。
表 2. 培菌昆虫放线菌及其次级代谢产物(至2018年10月) Table 2. The fungus-growing insects associated actinomycetes and their secondary metabolites
Insects | Actinomycetes | Compounds | Type | Bioactivity | Reference |
Acromyrmex octospinosus | Streptomyces | Candicidin D | Polyene | Escovopsis | [15] |
Pseudonocardia | Nystatin P1 | Polyene | Fungi | [16] | |
Streptomyces | Candicidin | Polyene | Candida | [16] | |
Streptomyces | Actinomycins | Peptides | Fungi | [17] | |
Valinomycins | Peptides | B. subtilis | |||
Antimycins | Candicidin macrolide | Fungi | |||
Allomerus | Streptomyces | Filipin Ⅰ- Ⅳ | Polyene | Fungi | [18] |
Tetraponera penzigi | Streptomyces | Formicamycins | Polyketone | G+ bacteria | [19] |
Apterostigma dentigerum | Pseudonocardia | Dentigerumycin | Peptides | Candida | [20] |
Pseudonocardia | Quinones | Quinones | Hep G | [21] | |
Pseudonocardia | Selvamicin | Polyene | Fungi | [22] | |
Pseudonocardia | 9-methoxyrebeccamycin | Peptides | Tumor cells | [23] | |
Trachymyrmex cornetzi | Pseudonocardia | Dentigerumycin | Peptides | Escovopsis | [24] |
Pseudonocardia | Gerumycins A, B | Peptides | ND | [24] | |
Pseudonocardia | Gerumycins C | Peptides | ND | [24] | |
Dendroctonus frontalis | Streptomyces | Mycangimycin | Polyene | Candida, Ophiostoma | [11, 25] |
Streptomyces | Frontalamides A, B | Macrolactam | Ophiostoma | [26] | |
Odontotermes formosanus | Streptomyces | Acrylamide | Acrylamide | Tumor cells | [27] |
Dihydrostreptazolin | Pyrazolone | Bacteria | |||
Streptomyces | Indolizine | Alkaloid | Bacteria | [28] | |
Streptomyces | Resistomycin | Quinones | Plant pathogen | [29] | |
Tetracenomycin | Quinones | ND | |||
Streptomyces | Fogacin | Peptides | Bacteria | [30] | |
Streptomyces | Roseoflavin | Vitamins | G+ bacteria | [31] | |
Macrotermes natalensis | Streptomyces | Microtermolides A, B | Peptides | ND | [32] |
Streptomyces | Natalamycin A | Polyene | Pseudoxylaria | [33] | |
Streptomyces | Termisoflavones A?C | Isoflavone | ND | [34] | |
Streptomyces | Dentigerumycins B-D | Peptides | NR | [35] | |
Amycolatopsis | Macrotermycins A?D | Candicidin macrolide | Bacteria | [36] | |
Actinomadura | Rubterolones A-F | Alkaloid | ND | [37] | |
Actinomadura | Rubrominins A-B | Peptides | NR | [38] | |
ND: not detected; NR: not reported. |
表选项
1.2 培菌甲虫 甲虫是鞘翅目昆虫的统称,是动物界中最大的目,其中培菌甲虫也丰富多样,包括小蠹科(Scolytidae)和长小蠢科(Platypodidae),其共生真菌的种类繁多,包括小囊菌目(Microascales)、长喙壳目(Ophiostomatales)、酵母菌及担子菌[8-9],目前仅南方松甲虫Southern pine beetles (SPB)有相关报道,其可培养担子菌Entomocorticium sp.A (EsA)形成菌圃[10-11],构成SPB-EsA共生体系,该体系易遭受致病真菌Ophiostoma minus的破坏,而培菌甲虫的贮菌器中存在着放线菌,其分泌的抗生素对病原真菌有很强的抑制活性,在抵御病原菌的过程中起着重要作用[11]。
1.3 培菌白蚁 培菌白蚁属于大白蚁亚科,包括纳塔尔大白蚁(Macrotermes natalensis)、黄翅大白蚁(Macrotermes barneyi)、土垅大白蚁(Macrotermes annandalei)、黑翅土白蚁(Odontotermes formosanus)和云南土白蚁(Odontotermes yunnanensis)等,培菌白蚁与鸡枞菌(伞菌目)共生。培菌白蚁的生活史比较复杂,其中繁殖蚁通过繁殖以建立新的群体,工蚁建立菌巢,兵蚁负责保卫蚁巢,形成一个稳定的培菌白蚁群落[12]。Humayra等对鸡枞菌的蛋白组进行分析,发现其可以产生多种糖苷水解酶和氧化还原酶,参与木质纤维素的降解[13],并协助宿主消化食物。培菌白蚁易受多种真菌侵染,如白僵菌、绿僵菌、木霉和炭角菌等[14]。Guo等从大白蚁蚁巢分离获得一株病原真菌Pseudoxylaria sp. X802[14],该菌对鸡枞菌有很强的抑制作用。但在健康的白蚁蚁巢中,鸡枞菌形成的菌圃是必不可少的,因此,白蚁或其共生菌必然存在一定的机制来抵制菌圃致病菌,维持白蚁菌巢的稳态[2]。其中白蚁相关放线菌作为活性天然化合物主要产生者,可能起着关键的协调作用。
2 培菌昆虫放线菌次级代谢产物 培菌蚂蚁相关放线菌研究较多,有八刺顶切叶蚁Acromyrmex octospinosus、Apterostigma dentigerum和Trachymyrmex cornetzi;培菌甲虫方面,仅南方松甲虫Dendroctonus frontalis有相关的报道;培菌白蚁相关放线菌的研究开展较晚,目前主要有黑翅土白蚁(Odontotermes formosanus)和纳塔尔大白蚁(Macrotermes natalensis)相关研究的报道。近年来,培菌昆虫相关放线菌不断被分离出来,其作为菌圃重要的防御微生物,从中分离得到的次级代谢产物的种类也不断丰富,详见表 2。相关次级代谢产物主要包括多肽、大环内酯、多烯、醌酮和生物碱等多种类型化合物,部分化合物有强的抑菌和抗癌活性,本文根据其化学结构进行分类介绍。
2.1 多肽类化合物 随着新型药物的不断出现,多肽类药物已经应用到多种疾病防治的领域,如抗病毒、抗肿瘤、抗菌和疫苗等。Schoenian等从切叶蚁菌圃放线菌分离得到两种已知的肽类物质:放线菌素(actinomycins)和缬氨霉素(valinomycins)[17],两种化合物具有抑制真菌和肿瘤细胞的活性,已用作抗癌药物。Clardy课题组从两种培菌蚂蚁分离的不同种放线菌中得到同一种环肽dentigerumycin[20, 24],该化合物可以抑制菌圃致病菌、白色念珠菌以及人类癌细胞[39];之后又从纳塔尔大白蚁放线菌中分离到三种化合物,dentigerumycin B-D[35],属于PKS-NRPS杂合类天然产物,与抗肿瘤化合物verucopeptin相似[40],verucopeptin可以抑制HIF-1信号通路的传递,具有开发为抗癌药的潜力。Lu等从黑翅土白蚁蚁巢获得的链霉菌Streptomyces BYC 01中纯化到一种环肽化合物fogacin[30],其对白色念珠菌的抑制活性与两性霉素相当,对一些细菌的抑制活性稍低于庆大霉素,并且对水稻白叶枯病菌也具有抑制活性,其合成途径和作用机制尚不清楚,有待进一步探究。
2.2 醌酮类化合物 Hee等从纳塔尔大白蚁表皮分离得到一株链霉菌Streptomyces sp. RB1,从中获得三种新的异黄酮苷化合物termisoflavones A?C[34],没有检测到其对癌细胞和微生物的活性,但发现termisoflavones B和C能减弱抗癌药物顺铂对猪肾细胞的损害,这也拓展了黄酮类化合物在药物领域的应用[41]。从上述同一菌株中分离得到的2种已知药用化合物大豆苷元-7-α-L-鼠李糖苷(daidzein-7-α-L-rhamnoside)和大豆异黄酮(daidzin),实验证明其对肾细胞的保护作用高于阳性对照N-乙酰半胱氨酸N-acetylcysteine[34],具有重要的药用价值。黑翅土白蚁链霉菌来源的dihydrostreptazolin对人类致病细菌包皮垢分支杆菌、藤黄微球菌和新型隐球菌有一定的抑制活性(MIC为64 μg/mL)[27];Carr等从培菌蚂蚁假诺卡氏菌分离得到5种醌类抗生素,其中一种化合物X-14881 E对癌细胞有抑制活性(IC50为36.1 μmol)[21],但深入研究发现其糖基化类似物却没有活性,可以作为化合物活性改造的依据[42];黑翅土白蚁相关链霉菌来源抗霉素resistomycin通过抑制菌丝体生长抑制植物致病真菌[29]。此类化合物有望在人类健康和农业生产中发挥作用。
2.3 多烯类化合物 多烯类抗生素具有广谱抗真菌作用,包括制霉菌素、两性霉素和纳他霉素。Barke等报道分离获得一株假诺卡氏菌来源抗真菌多烯类物质nystatin P1[16],该化合物类似于制霉菌素,在生物医药开发中具有很大的潜能。Ethan等从培菌蚂蚁表皮假诺卡氏菌中分离获得一种特殊的多烯大环内酯类化合物selvamicin[22],母核结构类似于临床上应用的抗真菌剂制霉菌素A1和两性霉素B,但具有其独特的结构特征。切叶蚁Allomerus相关放线菌来源的菲律宾素filipin Ⅰ-Ⅳ[18]通过与真菌细胞膜上麦角固醇结合,破坏真菌细胞膜结构来抑制真菌的生长。Clardy课题组报道分离于南方松树甲虫的放线菌可产生一种新的多烯过氧化物mycangimycin[11, 25],并对疟原虫有一定的抑制活性,其活性略低于青蒿素[43]。多烯类化合物杀念珠菌素(candicidin)[16]已应用于临床治疗白色念珠菌引起的炎症。研究表明,昆虫相关放线菌来源多烯类化合物具有抗真菌、抗疟疾的特性。
2.4 生物碱类化合物 生物碱是一类含氮的碱性有机化合物,主要存在于植物中,是中草药重要的活性成分。目前,从动物和微生物中分离得到很多具有生物活性的生物碱类化合物。2013年,Bi等从黑翅土白蚁肠道由来放线菌分离到一种新的生物碱类化合物indolizin[28],其对人类致病菌具有微弱的抑制活性。Guo等从纳塔尔大白蚁肠道来源马杜拉放线菌Actinomadura sp.分离获得5种新的生物碱类化合物rubterolones A-F[37],并通过全基因组测序分析,推测了其生物合成途径。但是多种生物碱类物质对人体有毒,仅有一些能够入药,因此,进一步深入研究其抑菌特性和药理效应具有重要意义。
2.5 其他类化合物 切叶蚁链霉菌产生的抗霉素antimycins属于大环内酯类化合物[17],常用于杀虫剂。培菌蚂蚁假诺卡氏菌产生的蝴蝶霉素(rebeccamycin)类似物9-methoxyrebeccamycin[23],属于色氨酸二聚体,有望开发作为一种新型的抗肿瘤剂。纳塔尔大白蚁工蚁肠道拟无枝酸菌合成4种新型化合物:大白蚁素(macrotermycins A?D)[36],其中A和C对金黄色葡萄球菌和白色念珠菌有抑制活性。Bi等从黑翅土白蚁肠道放线菌中得到一种新的丙烯酰胺类化合物2-formylpyrrole-4-acrylamide[27],其能抑制人乳腺癌和肺癌细胞的增殖,并对一些致病菌有抑制作用。Li等发现白蚁蚁后体表来源放线菌可以合成维生素B2类似物玫瑰黄色素(roseoflavin),能够抑制革兰氏阳性菌的生长[31]。由于昆虫本身不能合成维生素B族物质,roseoflavin可能作为蚁后的营养物质,在白蚁繁殖过程发挥重要作用。
以上报道表明,培菌昆虫相关放线菌可以产生多种抗菌活性的化合物。目前,本课题组也在开展培菌白蚁肠道放线菌来源活性化合物分离纯化的研究,我们发现前肠来源放线菌及其发酵液粗提物对植物和昆虫病原菌均表现出较强的抑制活性,相关化合物纯化与鉴定工作在进行中。
3 问题和展望 如上所述,在培菌昆虫相关放线菌及其次级代谢产物方面已经开展了许多研究,但在稀有放线菌的分离及活性产物的挖掘过程中仍面临下述许多问题。
(1) 培菌昆虫肠道环境复杂多变,难以模拟。通过常规的分离培养方法很难筛选得到特殊、新颖的放线菌。有关报道表明,虽然从培菌昆虫分离得到多株放线菌,但大多属于链霉菌属和假诺卡氏菌属。因此,这种特殊环境中的稀有放线菌及其次级代谢产物有待挖掘。
(2) 研究表明,多数的次级代谢产物基因处于沉默状态,常用活性筛选和追踪分离的方法获取天然产物,通过这些方法仅能得到一小部分有活性的次级代谢产物,极大地限制了天然产物的挖掘。
(3) 常规培养条件下,次级代谢产物产量低。在放线菌活性物质的分离纯化中,发酵体系大,产量低,也限制了其工业生产和应用。
随着新的微生物分离技术不断出现,有望通过改进并创新培养方法,从培菌昆虫中分离获得更多新颖的放线菌。近年来,基因组和转录组测序技术及合成生物学的快速发展,促进了激活及表达沉默基因簇的研究[44-46],研究人员可以通过调控基因的过表达、强启动子的插入和替换等手段,激活次级代谢产物基因簇,使其过量表达相应的次级代谢产物。
综上所述,昆虫肠道、体表及巢穴作为多种微生物的栖息环境,蕴含着丰富的放线菌资源,具有很大的开发潜力,结合分子生物学和合成生物学技术,对其深入挖掘,有望从中发掘更多新颖的生物农药或医药先导化合物。
References
[1] | Currie CR, Scott JA, Summerbell RC, Malloch D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature, 1999, 398(6729): 701-704. DOI:10.1038/19519 |
[2] | Xu X, Sun FF, Yin CP, Wang Y, Zhang YL. Research progress in the secondary metabolites of insect symbionts. Acta Microbiologica Sinica, 2018, 58(6): 1126-1140. (in Chinese) 徐晓, 孙飞飞, 尹彩萍, 王滢, 张应烙. 昆虫共生菌的次级代谢产物研究进展. 微生物学报, 2018, 58(6): 1126-1140. |
[3] | Poulsen M, Hu HF, Li C, Chen ZS, Xu LH, Otani S, Nygaard S, Nobre T, Klaubauf S, Schindler PM, Hauser F, Pan HL, Yang ZK, Sonnenberg ASM, De Beer ZW, Zhang Y, Wingfield MJ, Grimmelikhuijzen CJP, De Vries RP, Korb J, Aanen DK, Wang J, Boomsma JJ, Zhang GJ. Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(40): 14500-14505. DOI:10.1073/pnas.1319718111 |
[4] | van Arnam EB, Currie CR, Clardy J. Defense contracts: molecular protection in insect-microbe symbioses. Chemical Society Reviews, 2018, 47(5): 1638-1651. DOI:10.1039/C7CS00340D |
[5] | Mueller UG, Rehner SA, Schultz TR. The evolution of agriculture in ants. Science, 1998, 281(5385): 2034-2038. DOI:10.1126/science.281.5385.2034 |
[6] | Currie CR, Wong B, Stuart AE, Schultz TR, Rehner SA, Mueller UG, Sung GH, Spatafora JW, Straus NA. Ancient tripartite coevolution in the attine ant-microbe symbiosis. Science, 2003, 299(5605): 386-388. DOI:10.1126/science.1078155 |
[7] | Dhodary B, Schilg M, Wirth R, Spiteller D. Secondary metabolites from Escovopsis weberi and their role in attacking the garden fungus of leaf-cutting ants. Chemistry-A European Journal, 2018, 24(17): 4445-4452. DOI:10.1002/chem.201706071 |
[8] | Haanstad JO, Norris DM. Microbial symbiotes of the ambrosia beetle Xyloterinus-Politus. Microbial Ecology, 1985, 11(3): 267-276. DOI:10.1007/BF02010605 |
[9] | Batra LR. Ambrosia fungi - extent of specificity to ambrosia beetles. Science, 1966, 153(3732): 193-195. DOI:10.1126/science.153.3732.193 |
[10] | Whitney HS, Bandoni RJ, Oberwinkler F. Entomocorticium dendroctoni gen. et sp. nov. (Basidiomycotina), a possible nutritional symbiote of the mountain pine beetle in lodgepole pine in British Columbia. Canadian Journal of Botany, 1987, 65(1): 95-102. DOI:10.1139/b87-013 |
[11] | Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J, Currie CR. Bacterial protection of beetle-fungus mutualism. Science, 2008, 322(5898): 63. DOI:10.1126/science.1160423 |
[12] | Poulsen M. Towards an integrated understanding of the consequences of fungus domestication on the fungus-growing termite gut microbiota. Environmental Microbiology, 2015, 17(8): 2562-2572. DOI:10.1111/1462-2920.12765 |
[13] | Bashir H, Gangwar R, Mishra S. Differential production of lignocellulolytic enzymes by a white rot fungus Termitomyces sp. OE147 on cellulose and lactose. Biochimica et Biophysica Acta (BBA)- Proteins and Proteomics, 2015, 1854(10): 1290-1299. DOI:10.1016/j.bbapap.2015.07.005 |
[14] | Guo HJ, Kreuzenbeck NB, Otani S, Garcia-Altares M, Dahse HM, Weigel C, Aanen DK, Hertweck C, Poulsen M, Beemelmanns C. Pseudoxylallemycins A-F, cyclic tetrapeptides with rare allenyl modifications isolated from Pseudoxylaria sp. X802: a competitor of fungus-growing termite cultivars. Organic Letters, 2016, 18(14): 3338-3341. DOI:10.1021/acs.orglett.6b01437 |
[15] | Haeder S, Wirth R, Herz H, Spiteller D. Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(12): 4742-4746. DOI:10.1073/pnas.0812082106 |
[16] | Barke J, Seipke RF, Grüschow S, Heavens D, Drou N, Bibb MJ, Goss RJM, Yu DW, Hutchings MI. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biology, 2010, 8: 109. DOI:10.1186/1741-7007-8-109 |
[17] | Schoenian I, Spiteller M, Ghaste M, Wirth R, Herz H, Spiteller D. Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(5): 1955-1960. DOI:10.1073/pnas.1008441108 |
[18] | Gao H, Grüschow S, Barke J, Seipke RF, Hill LM, Orivel J, Yu DW, Hutchings M, Goss RJM. Filipins: the first antifungal "weed killers" identified from bacteria isolated from the trap-ant. RSC Advances, 2014, 4(100): 57267-57270. DOI:10.1039/C4RA09875G |
[19] | Qin ZW, Munnoch JT, Devine R, Holmes NA, Seipke RF, Wilkinson KA, Wilkinson B, Hutchings MI. Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants. Chemical Science, 2017, 8(4): 3218-3227. DOI:10.1039/C6SC04265A |
[20] | Oh DC, Poulsen M, Currie CR, Clardy J. Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nature Chemical Biology, 2009, 5(6): 391-393. DOI:10.1038/nchembio.159 |
[21] | Carr G, Derbyshire ER, Caldera E, Currie CR, Clardy J. Antibiotic and antimalarial quinones from fungus-growing ant-associated Pseudonocardia sp. Journal of Natural Products, 2012, 75(10): 1806-1809. DOI:10.1021/np300380t |
[22] | Van Arnam EB, Ruzzini AC, Sit CS, Horn H, Pinto-Tomas AA, Currie CR, Clardy J. Selvamicin, an atypical antifungal polyene from two alternative genomic contexts. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(46): 12940-12945. DOI:10.1073/pnas.1613285113 |
[23] | van Arnam EB, Ruzzini AC, Sit CS, Currie CR, Clardy J. A rebeccamycin analog provides plasmid-encoded niche defense. Journal of the American Chemical Society, 2015, 137(45): 14272-14274. DOI:10.1021/jacs.5b09794 |
[24] | Sit CS, Ruzzini AC, Van Arnam EB, Ramadhar TR, Currie CR, Clardy J. Variable genetic architectures produce virtually identical molecules in bacterial symbionts of fungus-growing ants. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(43): 13150-13154. DOI:10.1073/pnas.1515348112 |
[25] | Oh DC, Scott JJ, Currie CR, Clardy J. Mycangimycin, a polyene peroxide from a mutualist Streptomyces sp. Organic Letters, 2009, 11(3): 633-636. DOI:10.1021/ol802709x |
[26] | Blodgett JAV, Oh DC, Cao SG, Currie CR, Kolter R, Clardy J. Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(26): 11692-11697. DOI:10.1073/pnas.1001513107 |
[27] | Bi SF, Li F, Song YC, Tan RX, Ge HM. New acrylamide and oxazolidin derivatives from a termite-associated Streptomyces sp. Natural Product Communications, 2011, 6(3): 353-355. |
[28] | Bi SF, Guo ZK, Jiang N, Jiao RH, Ge HM, Tan RX. New alkaloid from Streptomyces koyangensis residing in Odontotermes formosanus. Journal of Asian Natural Products Research, 2013, 15(4): 422-425. DOI:10.1080/10286020.2013.767246 |
[29] | Zhang YL, Li S, Jiang DH, Kong LC, Zhang PH, Xu JD. Antifungal activities of metabolites produced by a termite-associated Streptomyces canus BYB02. Journal of Agricultural and Food Chemistry, 2013, 61(7): 1521-1524. DOI:10.1021/jf305210u |
[30] | Lu YH, Li S, Zhou DX, Zhang YL. Isolation and identification of termitarium antagonistic actinomycetes BYC 01 and its active metabolites. Acta Microbiologica Sinica, 2014, 54(7): 754-759. (in Chinese) 卢贻会, 李帅, 周端顼, 张应烙. 白蚁巢拮抗放线菌BYC01代谢产物的分离和鉴定. 微生物学报, 2014, 54(7): 754-759. |
[31] | Li S. Investigation on bioactive metabolites produced by three insect symbionts. Master Dissertation of Zhejiang Normal University, 2014. (in Chinese) 李帅.三株昆虫共生菌的活性代谢产物研究.浙江师范大学硕士学位论文, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10345-1014388167.htm |
[32] | Carr G, Poulsen M, Klassen JL, Hou YP, Wyche TP, Bugni TS, Currie CR, Clardy J. Microtermolides A and B from termite-associated Streptomyces sp. and structural revision of vinylamycin. Organic Letters, 2012, 14(11): 2822-2825. DOI:10.1021/ol301043p |
[33] | Kim KH, Ramadhar TR, Beemelmanns C, Cao SG, Poulsen M, Currie CR, Clardy J. Natalamycin A, an ansamycin from a termite-associated Streptomyces sp. Chemical Science, 2014, 5(11): 4333-4338. DOI:10.1039/C4SC01136H |
[34] | Kang HR, Lee D, Benndorf R, Jung WH, Beemelmanns C, Kang KS, Kim KH. Termisoflavones A-C, isoflavonoid glycosides from termite-associated Streptomyces sp. RB1. Journal of Natural Products, 2016, 79(12): 3072-2078. DOI:10.1021/acs.jnatprod.6b00738 |
[35] | Wyche TP, Ruzzini AC, Beemelmanns C, Kim KH, Klassen JL, Cao SG, Poulsen M, Bugni TS, Currie CR, Clardy J. Linear peptides are the major products of a biosynthetic pathway that encodes for cyclic depsipeptides. Organic Letters, 2017, 19(7): 1772-1775. DOI:10.1021/acs.orglett.7b00545 |
[36] | Beemelmanns C, Ramadhar TR, Kim KH, Klassen JL, Cao SG, Wyche TP, Hou YP, Poulsen M, Bugni TS, Currie CR, Clardy J. Macrotermycins A-D, glycosylated macrolactams from a termite-associated Amycolatopsis sp. M39. Organic Letters, 2017, 19(5): 1000-1003. DOI:10.1021/acs.orglett.6b03831 |
[37] | Guo HJ, Benndorf R, Leichnitz D, Klassen JL, Vollmers J, Gorls H, Steinacker M, Weigel C, Dahse HM, Kaster AK, de Beer ZW, Poulsen M, Beemelmanns C. Isolation, biosynthesis and chemical modifications of Rubterolones A-F: rare tropolone alkaloids from Actinomadura sp. 5-2. Chemistry-A European Journal, 2017, 23(39): 9338-9345. DOI:10.1002/chem.201701005 |
[38] | Benndorf R, Guo HJ, Sommerwerk E, Weigel C, Garcia-Altares M, Martin K, Hu HF, Kufner M, de Beer ZW, Poulsen M, Beemelmanns C. Natural products from Actinobacteria associated with fungus-growing termites. Antibiotics, 2018, 7(3): 83. DOI:10.3390/antibiotics7030083 |
[39] | Ramadhar TR, Beemelmanns C, Currie CR, Clardy J. Bacterial symbionts in agricultural systems provide a strategic source for antibiotic discovery. The Journal of Antibiotics, 2014, 67(1): 53-58. |
[40] | Yoshimura A, Nishimura S, Otsuka S, Hattori A, Kakeya H. Structure elucidation of verucopeptin, a HIF-1 inhibitory polyketide-hexapeptide hybrid metabolite from an Actinomycete. Organic Letters, 2015, 17(21): 5364-5367. DOI:10.1021/acs.orglett.5b02718 |
[41] | Kuhlmann MK, Horsch E, Burkhardt G, Wagner M, Kohler H. Reduction of cisplatin toxicity in cultured renal tubular cells by the bioflavonoid quercetin. Archives of Toxicology, 1998, 72(8): 536-540. DOI:10.1007/s002040050539 |
[42] | Zhao LS, Sherman DH, Liu HW. Biosynthesis of desosamine: Molecular evidence suggesting β-glucosylation as a self-resistance mechanism in Methymycin/Neomethymycin producing strain, Streptomyces venezuelae. Journal of the American Chemical Society, 1998, 120(36): 9374-9375. DOI:10.1021/ja981500j |
[43] | Eckstein-Ludwig U, Webb RJ, van Goethem IDA, East JM, Lee AG, Kimura M, O'Neill PM, Bray PG, Ward SA, Krishna S. Artemisinins target the SERCA of Plasmodium falciparum. Nature, 2003, 424(6951): 957-961. DOI:10.1038/nature01813 |
[44] | Kurniawan YN, Kitani S, Maeda A, Nihira T. Differential contributions of two SARP family regulatory genes to indigoidine biosynthesis in Streptomyces lavendulae FRI-5. Applied Microbiology and Biotechnology, 2014, 98(23): 9713-9721. DOI:10.1007/s00253-014-5988-9 |
[45] | Luo YZ, Huang H, Liang J, Wang M, Lu L, Shao ZY, Cobb RE, Zhao HM. Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. Nature Communications, 2013, 4: 2894-2909. DOI:10.1038/ncomms3894 |
[46] | Yang CF, Huang CS, Zhang WJ, Zhu YG, Zhang CS. Heterologous expression of fluostatin gene cluster leads to a bioactive heterodimer. Organic Letters, 2015, 17(21): 5324-5327. DOI:10.1021/acs.orglett.5b02683 |