孙新新, 未建华, 李净净, 倪金凤
山东大学微生物技术国家重点实验室, 山东 济南 250100
收稿日期:2017-07-11;修回日期:2017-11-25;网络出版日期:2018-01-05
基金项目:国家自然科学基金(31272370);国家“973项目”(2011CB707402)
作者简介:倪金凤, 兰州大学细胞工程专业硕士, 日本岐阜大学生物资源科学专业博士。曾任日本生研机构特别研究员, 日本学术振兴会(JSPS)外籍特别研究员, 韩国首尔大学访问教授。2004年起受聘于山东大学微生物技术国家重点实验室, 教授、博士生导师。主要研究方向为:特殊环境(极端环境及白蚁肠道)微生物及微生物酶的研究与应用。具体包括:(1)白蚁木质纤维素降解酶系研究; (2)白蚁肠道微生物多样性及功能研究; (3)极端微生物和极端酶研究; (4)超嗜热古菌DNA重组和修复相关蛋白酶的结构与功能研究。2006年以来主持或参与完成4项国家自然科学基金委面上项目, 1项国家自然科学基金委重点项目, 1项国家重点基础研究发展计划(973)子课题, 发表学术论文五十余篇
*通信作者:倪金凤, Tel/Fax:+86-531-86363323, E-mail:jinfgni@sdu.edu.cn
摘要:[目的]营发酵单胞菌属Dysgonomonas是黄翅大白蚁后肠的第二优势微生物。前期研究中,我们从黄翅大白蚁后肠分离出一种命名为大白蚁营发酵菌的新菌。为深入了解大白蚁营发酵菌在宿主白蚁体内发挥的作用和功能,有必要解析大白蚁营发酵菌的基因组序列信息。[方法]使用Illumina Miseq测序平台获取该菌的全基因组序列,将其全基因组序列经过注释的基因蛋白质序列提交COG和KEGG数据库进行BLASTp比对分析,确定该菌潜在的重要酶类和代谢途径,并对个别纤维素酶活进行检测。[结果]大白蚁营发酵菌整个基因组大小为4655756 bp,GC含量为38.54%,DDBJ数据库登录号为BBXL01000001–BBXL01000078。生物信息学分析结果表明菌株大白蚁营发酵菌具有多个木质纤维素降解酶基因,且具备完整的木质纤维素降解和乙酸、乳酸生成通路。此外发现该菌株中存在与氮源代谢和抵御病原体相关的基因。[结论]本研究首次解析大白蚁营发酵菌的全基因组序列,了解其基因组基本特征,初步探讨了该菌降解木质纤维素的过程,为细菌协助宿主白蚁降解木质纤维素提供了理论基础,同时为该菌可能参与宿主白蚁氮源代谢和抵御病原体入侵提供了依据。
关键词: 黄翅大白蚁 大白蚁营发酵菌 全基因组解析 木质纤维素降解
Whole-genome analysis of the dominant bacterium Dysgonomonas macrotermitis in the hindgut of Macrotermes barneyi
Xinxin Sun, Jianhua Wei, Jingjing Li, Jinfeng Ni
State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, shandong Province, China
Received 11 July 2017; Revised 25 November 2017; Published online 5 January 2018
*Corresponding author: Jinfeng Ni, Tel/Fax:+86-531-86363323, E-mail:jinfgni@sdu.edu.cn
Supported by the National Natural Science Foundation of China (31272370) and by the National Basic Research Program of China (2011CB707402)
Abstract: [Objective]The bacteria of the genus Dysgonomonas are the second dominant microbes in the hindgut of Macrotermes barney. In the previous work, we isolated a novel bacterium from the hindgut of M. barneyi and designated it as Dysgonomonas macrotermitis. To further understand the roles of the bacteria in termite, it is necessary to obtain the genome sequence of D. macrotermitis.[Methods]The whole genome was sequenced by Illumina MiSeq. The protein sequences from the whole genome were annotated and compared with those in the Cluster of Orthologous Groups of proteins (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases by BLASTp. Several potential lignocellulose-degrading enzymes were identified.[Results]The genome sequence is composed of 4655756 bp with G+C content of 38.54%. This whole genome sequencing has been deposited in DDBJ under the accession numbers BBXL01000001 to BBXL01000078. Bioinformatic analysis shows that strain harbored genes encoding important enzymes with potential to degrade lignocellulose. Also, it had a complete cellulose degradation pathway where acetate and lactate were end-products. Genes possibly involved in nitrogen metabolism and defending against pathogens were also identified.[Conclusion]Our findings provide basis for the understanding the roles of hindgut bacteria contributing to termite host lignocellulose degradation.
Key words: Macrotermes barneyi Dysgonomonas macrotermitis whole-genome sequencing lignocellulose degrading
白蚁是一种完全社会性昆虫,与蟑螂的亲缘关系非常近[1]。白蚁主要分布于热带和亚热带地区,是木质纤维素的主要降解者,在自然界生态系统的碳循环中起重要作用[2]。目前已知的白蚁种类大概有3000多种,根据肠道内有无原生生物,白蚁大致分为两类:低等白蚁(肠道有原生生物)和高等白蚁(肠道内无原生生物),低等白蚁和高等白蚁的比例约为1:3。低等白蚁均食木,高等白蚁食性比较复杂,包括食木白蚁、食土/腐殖质白蚁和培菌白蚁三大类[3]。在低等白蚁肠道内,原生生物在其降解木质纤维素的过程中起重要的作用[4];高等白蚁肠道内不含原生生物,肠道细菌在木质纤维素的消化降解方面起主要的作用[5]。另外木质纤维素含氮量低,肠道微生物在协助白蚁氮源代谢(氮的固定、氮的回收利用和氮的升级)方面发挥重要作用[3]。最近还有研究报道,白蚁共生微生物在抵御病原菌侵染白蚁方面具有重要作用[6]。
高等白蚁中大白蚁亚科Macrotermitinae能够在菌圃中培养鸡枞菌Termitomyces,这类白蚁又称为培菌白蚁。通过高通量测序的方法已经从多种白蚁中检测到营发酵单胞菌属的菌株[7-8]。本实验室前期对培菌白蚁黄翅大白蚁后肠细菌进行菌群结构分析,发现营发酵单胞菌属为黄翅大白蚁后肠的第二优势微生物,通过传统的分离鉴定方法获得该属的新菌大白蚁营发酵菌,这是首次从白蚁肠道中分离到该属的菌株。目前报道的该属的菌株有9株,其中2株分离于白蚁肠道[9-10],其他的分离于人类临床样品、生物燃料电池和废水[11-16]。为进一步了解白蚁肠道中大白蚁营发酵菌菌株对宿主白蚁中的具体作用,本研究对该菌株的全基因组序列进行了测序并分析了基因组的基本结构,初步探讨了木质纤维素的降解过程,探讨了该菌株可能对宿主白蚁的作用。本研究对于理解大白蚁营发酵菌菌株协助宿主白蚁降解木质纤维素提供了理论依据。
1 材料和方法 1.1 材料
1.1.1 破壁缓冲液: 50 mmol/L Tris-HCl (pH 8.0),100 mmol/L NaCl。
1.1.2 培养基(g/L): ① MM14培养基:酵母粉5.00,胰蛋白胨10.00,NaCl 5.00,Na2HPO4 4.00,葡萄糖1.50,可溶性淀粉0.50,半胱氨酸0.50,血清粉13.50;② β-葡萄糖苷酶酶活检测培养基(含柠檬酸铁铵和七叶苷):胰蛋白胨10.00,酵母粉5.00,NaCl 5.00,柠檬酸铁铵5.00,七叶苷2.00;③内切葡聚糖酶活检测培养基:CMC-Na 10.00,KNO3 1.00,MgSO4·7H2O 0.50,KH2PO4 0.30,K2HPO4 0.70,FeSO4·7H2O 0.01,FeSO4·7H2O 0.01,FeSO4·7H2O 0.01;④木聚糖酶酶活检测培养基:胰蛋白胨10.00,酵母粉5.00,NaCl 5.00,桦木木聚糖15.00。
1.2 菌株培养与基因组DNA的提取 大白蚁营发酵菌分离于黄翅大白蚁后肠,由本实验室分离保存。于MM14培养基中37 ℃培养72 h,采用十六烷基三甲基溴化铵(CTAB)法提取基因组DNA,具体步骤见参考文献[17]。
1.3 全基因组分析 细菌完整基因组测序与拼接参见作者所发表文章[18]。使用BLASTp[19]工具,借用目前运用最广泛的蛋白质功能数据库COG (Clusters of Orthologous Groups)、Gene Ontology (GO)数据库和代谢通路数据库KEGG (Kyoto Encyclopedia of Genes and Genomes)与该基因组预测的氨基酸序列逐一进行比对(要求单个序列与COG某一序列匹配数量 > 90%,匹配质量 > 20%),分别对其蛋白质功能和生物学代谢通路进行分类。采用RNAmmer[20]和tRNAscan-SE[21]软件分别进行rRNA和tRNA的预测。
1.4 木质纤维素代谢相关基因分析 根据预测蛋白序列与KEEG数据库比对后的结果及KEGG PATHWAY数据库,重建菌株的碳源代谢通路(carbon metabolism,PATH: ko01200)图,并对定位属于碳源代谢通路相关的75个基因及COG功能分类中归入碳水化合物转运与代谢(G,carbohydrate transport and metabolism)的相关基因进行分析,研究木质纤维素的降解机制。
1.5 木质纤维素酶酶活的鉴定
1.5.1 培养液上清和菌体破壁上清的获得: 将大白蚁营发酵菌接种于20 mL MM14培养基,37 ℃培养48 h,4 ℃、10000 r/min离心5 min,得到培养液上清和菌体。菌体用1 mL破壁缓冲液重悬,进行超声破壁,离心得到菌体破壁上清。
1.5.2 内切葡聚糖酶酶活和木聚糖酶酶活的鉴定: 将获得的培养液上清50 μL和菌体破壁上清20 μL点到内切葡聚糖酶酶活和木聚糖酶酶活的验证平板,37 ℃内切葡聚糖酶和木聚糖酶分别反应24 h和12 h,反应结束后通过刚果红染色鉴定该菌株是否产生内切葡聚糖酶和木聚糖酶。刚果红染色方法具体为:70%乙醇洗去菌落,用0.3%的刚果红溶液染色20 min,然后用1 mol/L NaCl脱色20 min。若产生水解圈,则证明该菌株可以产生内切葡聚糖酶和木聚糖酶。
将获得的发酵液上清50 μL和菌体破壁上清10 μL点到β-葡萄糖苷酶验证平板上,37 ℃培养12 h,鉴定菌株是否产生β-葡萄糖苷酶。如果产生β-葡萄糖苷酶,会出现棕褐色的水解圈。
2 结果和分析 2.1 基因组组装 使用Velvet 1. 2. 10软件完成序列拼接(原始序列5624712个paired-end reads,读长90 bp,插入片段大小500 bp,测序深度302×),拼接获得78个contigs(其中67个大于1000 bp),N50大小为149547 bp。补缺口完成后,获得完整的大白蚁营发酵菌基因组序列,序列全长4655756 bp,其GC含量为38.54%,编码3817个基因,平均长度为1051 bp,其中包含3个16S-23S-5S核糖体rRNA操纵子和45个tRNA (表 1)。
表 1. 5株营发酵单胞菌基因组的基本特征 Table 1. General features of genomes of five Dysgonomonas strains
Attribute | D. gadei | D. mossii | D. hofstadii | D. capnocytophagoides | D. macrotermitis |
Total length/Mb | 5.2 | 3.9 | 5.0 | 4.4 | 4.7 |
Total genes | 4135 | 3405 | ND | 3563 | 3943 |
rRNA genes | 13 | 14 | ND | 13 | 3 |
tRNA genes | 40 | 46 | ND | 45 | 45 |
G+C contents/% | 39.6 | 37.5 | 39.5 | 37.7 | 38.5 |
Protein coding genes | 3986 | 3304 | ND | 3439 | 3817 |
BioProject | PRJNA46409 | PRJNA224116 | PRJDB873 | PRJNA195789 | PRJDB3926 |
ND: Not determined. |
表选项
2.2 基因组注释
2.2.1 COG功能分析: 大白蚁营发酵菌基因组包含3817个CDS (coding sequence),将其编码对应蛋白序列与COG数据库比对完成同源基因注释分类,得到包括信息储存及处理、细胞生物学过程及信号传导、基本代谢、未知功能的编码基因(图 1)。如图 1所示,共有1272个蛋白获得COG功能注释,其中参与翻译和核糖体结构及合成(J,translation,ribosomal structure and biogenesis)、糖类转运及代谢(G,carbohydrate transport and metabolism)、氨基酸代谢及转运(E,amino acid transport and metabolism)、通用功能预测(R,general function prediction only)、细胞壁/细胞膜/包膜合成(M,cell wall/membrane /envelope biogenesis)、能量产生及传递(C,energy production and conversion)、复制重组及修复(L,replication, recombination and repair)、无机离子转运与代谢(P,inorganic ion transport and metabolism)和转录(K,transcription)的蛋白占据较大比例,分别为10.1%、9.9%、9.7%、8.3%、8.2%、7.1%、6.7%、5.3%和5.2%。
图 1 大白蚁营发酵菌的COG功能分类 Figure 1 Gene distribution based on COG classification of D. macrotermitis. J: Translation, ribosomal structure and biogenesis; K: Transcription; L: Replication, recombination and repair; D: Cell cycle control, cell division, chromosome partitioning; M: Cell wall/membrane/envelope biogenesis; N: Cell motility; O: Posttranslational modification, protein turnover, chaperones; T: Signal transduction mechanisms; U: Intracellular trafficking, secretion and vesicular transport; V: Defense mechanisms; C: Energy production and conversion; E: Amino acid transport and metabolism; F: Nucleotide transport and metabolism; G: Carbohydrate transport and metabolism; H: Coenzyme transport and metabolism; I: Lipid transport and metabolism; P: Inorganic ion transport and metabolism; Q: Secondary metabolite biosynthesis, transport and catabolism; R: General function prediction only; S: Function unknown. |
图选项 |
2.2.2 GO功能分类: 将CDS编码蛋白序列与Interpro数据库和Gene ontology (GO)数据库比对,获得GO注释信息,如图 2所示,GO功能分类主要对细胞组分(cellular component)、分子功能(molecular function)、生物学过程(biological process)进行分类,其中归类为代谢过程(metabolic process)、细胞内过程(cellular process)、细胞部位(cell part)、细胞(cell)、结合(binding)和催化(catalytic activity)的基因数量占据优势(超过20%),表明菌株活性多集中于代谢、分化和酶催化的过程。
图 2 大白蚁营发酵菌的GO功能分类 Figure 2 Gene distribution based on gene ontology classification of D. macrotermitis. |
图选项 |
2.2.3 KEGG代谢通路分类: 根据KEGG对该菌株的分析结果可知,在近89种代谢通路中,其中与碳源代谢相关的基因包括75个,这些基因主要参与淀粉和蔗糖代谢、半乳糖代谢、果糖和甘露糖代谢等,存在多个与木质纤维素降解相关的基因,参与的酶及对应的CDS序列号参看表 2,其中超氧化物歧化酶(superoxide dismutase)和谷胱甘肽过氧化酶(glutathione peroxidase)参与木质素的降解,这些基因和通路的存在为大白蚁营发酵菌协助白蚁降解木质纤维素提供了依据。其中内切葡聚糖酶EG作用于纤维素的半结晶区/无定型区域,随机切割分子内部的糖苷键产生寡糖;β-葡萄糖苷酶BG负责水解小于6个葡萄糖单元组成的寡糖类,产物为葡萄糖。淀粉和蔗糖转化为葡萄糖进入糖酵解途径,而果糖、半乳糖和甘露糖转化为糖酵解途径中的中间产物进入糖酵解途径,如图 3所示,其中参与糖酵解和乙酸生成途径的酶及对应的CDS序列号参看表 3。糖酵解产生的丙酮酸转化为乙酸和D-乳酸,为宿主白蚁提供碳源和能量。同时发现在该菌株存在与木质素降解有关、氮源代谢以及抵御病原体入侵有关的基因(表 2)。
表 2. 大白蚁营发酵菌中与木质纤维素降解、氮源代谢以及抵抗真菌有关的酶 Table 2. Enzymes involved in lignocellulose degrading, nitrogen metabolism and defending against pathogens in D. macrotermitis
Functional annotations | Enzymes Definitions | Locus-tags (CDS) | Orthologous genes |
Lignocellulose degrading enzymes | Endoglucanase [EC:3.2.1.4] | orf01038_1, orf01057_1, orf01058_1, orf01678_1, orf01678_1 | K01179 |
β-glucosidase [EC:3.2.1.21] | orf00046_1, orf00122_1, orf00127_1, orf00224_1, orf00284_1, orf00/353_1, orf01054_1, orf01056_1, orf01110_1, orf01672_1, orf01676_1, orf02163_1, orf02751_1, orf02798_1, orf02800_1 | K05349 | |
Endo-β-1, 4-xylanase [E3.2.1.8] | orf00078_1、orf03640_1、orf03642_1 | K01181 | |
β-galactosidase [EC:3.2.1.23] | orf00677_1, orf00977_1, orf00998_1, orf01050_1, orf01205_1, orf02167_1, orf02550_1, orf02795_1, orf03373_1 | K011090 | |
alpha-N-arabinofuranosidase [EC:3.2.1.55] | orf00059_1, orf00086_1, orf02767_1 | K01209 | |
Mannan endo-1, 4-β-mannosidase [EC:3.2.1.78] | orf01675_1 | K01218 | |
Superoxide dismutase [EC:1.15.1.1] | orf00131_1, orf02229_1 | K04564 | |
Glutathione peroxidase [EC:1.11.1.9] | orf03671_1 | K00432 | |
Nitrogen metabolism | NAD(P)H nitroreductase | orf00359_1, orf03686_1 | NF |
Nitroreductase | orf00702_1, orf02962_1, orf03243_1 | NF | |
Defend against pathogens | Amidohydrolase | orf00117_1 | NF |
N-acyl-L-amino acid amidohydrolase | orf02685_1 | NF | |
1, 3-beta-glucanase | orf00288_1 | NF | |
NF: Not found. |
表选项
图 3 大白蚁营发酵菌的糖酵解途径 Figure 3 Glycolysis pathway of strain D. macrotermitis. The numbers (1-15) are the enzymes involved in the reaction and are described in Table 3. |
图选项 |
表 3. 大白蚁营发酵菌糖酵解途径中的酶 Table 3. The enzymes involved in glycolysis pathway of strain D. macrotermitis
Number | Enzymes definitions | Locus-tags (CDS) | Orthologous genes |
1 | Phosphoglucomutase [EC:5.4.2.2] | orf02188_1 | K01835 |
2 | Glucose-6-phosphate isomerase [EC:5.3.1.9] | orf02981_1 | K01810 |
3 | 6-phosphofructokinase 1 [EC:2.7.1.11] | orf03744_1 | K00850 |
4 | Fructose-1, 6-bisphosphatase I [EC:3.1.3.11] | orf02190_1 | K03841 |
5 | Fructose-bisphosphate aldolase, class I [EC:4.1.2.13] | orf02051_1 | K01624 |
6 | Glyceraldehyde 3-phosphate dehydrogenase [EC:1.2.1.12] | orf01245_1 | K00134 |
7 | Phosphoglycerate kinase [EC:2.7.2.3] | orf03003_1 | K00927 |
8 | 2, 3-bisphosphoglycerate-dependent phosphoglycerate mutase [EC:5.4.2.11] | orf01381_1 | K01834 |
9 | Enolase [EC:4.2.1.11] | orf02691_1 | K01689 |
10 | Pyruvate kinase [EC:2.7.1.40] | orf00400_1 | K00873 |
11 | Pyruvate dehydrogenase (quinone) [EC:1.2.5.1] | orf02563_1 | K00156 |
12 | Glucose-1-phosphatase [EC:3.1.3.10] | orf00302_1 | K01085 |
13 | Aldose 1-epimerase [EC:5.1.3.3] | orf01172_1 | K01785 |
14 | Glucokinase [EC:2.7.1.2] | orf02864_1 | K00845 |
15 | D-lactate dehydrogenase [EC:1.1.1.28] | orf03445_1 | K03778 |
Numbers 1-15 corresponding to the numbers in Figure 3. |
表选项
2.3 木质纤维素酶酶活的鉴定 通过刚果红染色鉴定菌株培养液上清和菌体破壁上清是否产生内切葡聚糖酶和木聚糖酶,发现菌体破壁上清在内切葡聚糖酶和木聚糖酶验证平板上均出现水解圈(图 4),预示该菌株有内切葡聚糖酶和木聚糖酶两种酶的酶活,但是酶的活性比较低。在含Fe2+和七叶苷的LB平板上,发现菌体破壁上清在β-葡萄糖苷酶验证平板上出现明显的棕褐色水解圈,表明该菌株可产生β-葡萄糖苷酶。
图 4 木质纤维素酶酶活的鉴定 Figure 4 The assay of lignocellulolytic enzymes activity. |
图选项 |
3 讨论 白蚁能够高效降解木质纤维素,低等白蚁原生生物在降解木质纤维素过程中具有重要的作用,而培菌白蚁是通过白蚁、肠道共生细菌和真菌共同将木质纤维素彻底降解。来源于高等白蚁黑翅土白蚁唾液腺的内切葡聚糖酶基因和黄翅大白蚁中肠的β-葡萄糖苷酶基因均得到异源表达[22-23],鸡枞菌帮助白蚁降解木质素[24],最近研究发现内共生细菌在木质纤维素的降解过程中具有重要作用[25]。营发酵单胞菌属属于拟杆菌门紫单胞菌科,而该属为黄翅大白蚁后肠的第二优势菌。我们首次从白蚁后肠中分离到该属的菌株,但该菌株对白蚁的具体作用是未知的。培菌白蚁M. annandalei宏基因文库中发现拟杆菌属和营发酵单胞菌属富含β-葡萄糖苷酶基因,且从废水中分离的Dysgonomonas sp. WJDL-Y1可以降解木质素[16, 26],大白蚁营发酵菌中也发现了与木质素降解有关的基因。本研究分析了大白蚁营发酵菌的全基因组序列,发现多个内切葡聚糖酶、β-葡萄糖苷酶和木聚糖酶等基因,且通过平板鉴定发现该菌确实能够产生β-葡萄糖苷酶、内切葡聚糖酶和木聚糖酶,但酶活不高,还需进一步分析这些基因序列的结构和表达特性。根据糖酵解途径分析,丙酮酸最终转化为乙酸和乳酸,乙酸和乳酸为宿主白蚁提供能量。之前研究中葡萄糖发酵主要的最终产物为乙酸(24.2 mmol/L)和乳酸(10.6 mmol/L),这与之前研究一致[9]。通过基因注释分析,同时发现与氮源代谢以及抵御病原体入侵有关的基因,表明该菌可能参与了宿主白蚁氮源的代谢以及病原体入侵过程。
本研究表明培菌白蚁后肠细菌大白蚁营发酵菌具有多个木质纤维素降解基因,具有糖酵解和乙酸、乳酸生成通路中重要酶类的编码基因,从基因层面证实了该菌株具有降解纤维素生成葡萄糖的能力,最终产生的乙酸和乳酸为宿主白蚁提供能量和碳源。大白蚁营发酵菌的全基因组分析为白蚁后肠营发酵单胞菌属细菌协助白蚁降解木质纤维素提供了依据。
References
[1] | Inward DJG, Vogler AP, Eggleton P. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Molecular Phylogenetics and Evolution, 2007, 44(3): 953-967. DOI:10.1016/j.ympev.2007.05.014 |
[2] | Ni JF, Tokuda G. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnology Advances, 2013, 31(6): 838-850. DOI:10.1016/j.biotechadv.2013.04.005 |
[3] | Hongoh Y. Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cellular and Molecular Life Sciences, 2011, 68(8): 1311-1325. DOI:10.1007/s00018-011-0648-z |
[4] | Bignell DE, Roisin Y, Lo N. Biology of termites:a modern synthesis. Berlin, Netherlands: Springer, 2011. |
[5] | Brune A, Dietrich C. The gut microbiota of termites:digesting the diversity in the light of ecology and evolution. Annual Review of Microbiology, 2015, 69: 145-166. DOI:10.1146/annurev-micro-092412-155715 |
[6] | Peterson BF, Scharf ME. Metatranscriptome analysis reveals bacterial symbiont contributions to lower termite physiology and potential immune functions. BMC Genomics, 2016, 17: 772. DOI:10.1186/s12864-016-3126-z |
[7] | Mikaelyan A, Thompson CL, Hofer MJ, Brune A. Deterministic assembly of complex bacterial communities in guts of germ-free cockroaches. Applied and Environmental Microbiology, 2015, 82(4): 1256-1263. |
[8] | Makonde HM, Mwirichia R, Osiemo Z, Boga HI, Klenk HP. 454 Pyrosequencing-based assessment of bacterial diversity and community structure in termite guts, mounds and surrounding soils. Springerplus, 2015, 4: 471. DOI:10.1186/s40064-015-1262-6 |
[9] | Yang YJ, Zhang N, Ji SQ, Lan X, Zhang KD, Shen YL, Li FL, Ni JF. Dysgonomonas macrotermitis sp. nov., isolated from the hindgut of a fungus-growing termite. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 9): 2956-2961. DOI:10.1099/ijs.0.061739-0 |
[10] | Pramono AK, Sakamoto M, Iino T, Hongoh Y, Ohkuma M. Dysgonomonas termitidis sp. nov., isolated from the gut of the subterranean termite Reticulitermes speratus. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(Pt 2): 681-685. DOI:10.1099/ijs.0.070391-0 |
[11] | Hofstad T, Olsen I, Eribe ER, Falsen E, Collins MD, Lawson PA. Dysgonomonas gen. nov. to accommodate Dysgonomonas gadei sp. nov., an organism isolated from a human gall bladder, and Dysgonomonas capnocytophagoides (formerly CDC group DF-3). International Journal of Systematic and Evolutionary Microbiology, 2000, 50(6): 2189-2195. DOI:10.1099/00207713-50-6-2189 |
[12] | Lawson PA, Falsen E, Ingan?s E, Weyant RS, Collins MD. Dysgonomonas mossii sp. nov., from human sources. Systematic and Applied Microbiology, 2002, 25(2): 194-197. DOI:10.1078/0723-2020-00107 |
[13] | Lawson PA, Carlson P, Wernersson S, Moore ERB, Falsen E. Dysgonomonas hofstadii sp. nov., isolated from a human clinical source. Anaerobe, 2010, 16(2): 161-164. DOI:10.1016/j.anaerobe.2009.06.005 |
[14] | Kita A, Miura T, Okamura Y, Aki T, Matsumura Y, Tajima T, Kato J, Nakashimada Y. Dysgonomonas alginatilytica sp. nov., an alginate-degrading bacterium isolated from a microbial consortium. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(10): 3570-3575. DOI:10.1099/ijsem.0.000459 |
[15] | Kodama Y, Shimoyama T, Watanabe K. Dysgonomonas oryzarvi sp. nov., isolated from a microbial fuel cell. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(12): 3055-3059. |
[16] | Duan J, Liang JD, Wang YP, Du WJ, Wang DQ. Kraft lignin biodegradation by Dysgonomonas sp. WJDL-Y1, a new anaerobic bacterial strain isolated from sludge of a pulp and paper mill. Journal of Microbiology and Biotechnology, 2016, 26(10): 1765-1773. DOI:10.4014/jmb.1602.02014 |
[17] | Shi XY, Zhang N, Ning N, Yuan C, Ni JF. Isolation and identification of xylan-degradation bacteria from hindgut of fungus-growing termite. Microbiology China, 2016, 43(3): 504-509. (in Chinese) 石小玉, 张宁, 宁娜, 员超, 倪金凤. 一株培菌白蚁后肠木聚糖降解细菌的分离与鉴定. 微生物学通报, 2016, 43(3): 504-509. |
[18] | Sun XX, Yang YJ, Zhang N, Shen YL, Ni JF. Draft genome sequence of Dysgonomonas macrotermitis strain JCM 19375T, isolated from the gut of a termite. Genome Announcements, 2015, 3(4): e00963-15. |
[19] | Altschul SF, Madden TL, Sch?ffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Research, 1997, 25(17): 3389-3402. DOI:10.1093/nar/25.17.3389 |
[20] | Lagesen K, Hallin P, R?dland EA, St?rfeldt HH, Rognes T, Ussery DW. RNAmmer:consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research, 2007, 35(9): 3100-3108. DOI:10.1093/nar/gkm160 |
[21] | Lowe TM, Eddy SR. tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 1997, 25(5): 955-964. DOI:10.1093/nar/25.5.0955 |
[22] | Tokuda G, Lo N, Watanabe H, Arakawa G, Matsumoto T, Noda H. Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Molecular Ecology, 2004, 13(10): 3219-3228. DOI:10.1111/j.1365-294X.2004.02276.x |
[23] | Wu Y, Chi S, Yun C, Shen Y, Tokuda G, Ni J. Molecular cloning and characterization of an endogenous digestive β-glucosidase from the midgut of the fungus-growing termite Macrotermes barneyi. Insect Molecular Biology, 2012, 21(6): 604-614. DOI:10.1111/imb.2012.21.issue-6 |
[24] | Johjima T, Taprab Y, Noparatnaraporn N, Kudo T, Ohkuma M. Large-scale identification of transcripts expressed in a symbiotic fungus (Termitomyces) during plant biomass degradation. Applied Microbiology and Biotechnology, 2006, 73(1): 195-203. DOI:10.1007/s00253-006-0570-8 |
[25] | Li HJ, Yelle DJ, Li C, Yang MY, Ke J, Zhang RJ, Liu Y, Zhu N, Liang SY, Mo XC, Ralph J, Currie CR, Mo JC. Lignocellulose pretreatment in a fungus-cultivating termite. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(18): 4709-4714. DOI:10.1073/pnas.1618360114 |
[26] | Zhang ML, Liu N, Qian CL, Wang QF, Wang Q, Long YH, Huang YP, Zhou ZH, Yan X. Phylogenetic and functional analysis of gut Microbiota of a fungus-growing higher termite:bacteroidetes from higher termites are a rich source of β-glucosidase genes. Microbial Ecology, 2014, 68(2): 416-425. DOI:10.1007/s00248-014-0388-3 |