尹华1, 陈江野2, 常鹏1
1.西南大学资源环境学院, 生物能源与环境修复研究中心, 重庆 400715;
2.中国科学院上海生物化学与细胞生物学研究所, 上海 200031
收稿日期:2018-02-13;修回日期:2018-03-31;网络出版日期:2018-04-26
基金项目:中央高校基本科研业务费专项资金(XDJK2017C083);重庆市博士后科学基金(Xm2017023)
作者简介:常鹏,博士,现为西南大学资源环境学院博士后。博士毕业于中科院上海生物化学与细胞生物学研究所生物化学与分子生物学专业。博士期间主要研究白念珠菌形态发生的转录调控机制。现主要从事白腐真菌和莱茵衣藻基因功能研究
*通信作者:常鹏。Tel:+86-23-68250994, E-mail:cp1986@swu.edu.cn
摘要:[目的]应用Tet-off启动子研究白念珠菌唯一的14-3-3蛋白Bmh1在白念珠菌生长和菌丝发育过程中的功能。[方法]在白念珠菌URA3+菌株SN152中,我们敲除了1个BMH1基因拷贝,并用Tet-off启动子替代另一个BMH1基因拷贝的启动子,得到了可以用强力霉素(Doxycycline)控制Bmh1表达水平的菌株。然后我们通过斑点试验和形态学观察对该菌株的生长和菌丝发育表型进行了分析。通过在ras1、flo8、efg1、cph1、tec1等重要菌丝发育调控因子突变体中过表达Bmh1,我们初步研究了Bmh1在菌丝发育调控网络中的位置。最后,我们构建了一些不同C末端的Bmh1嵌合体并检测了其对白念珠菌生长和菌丝发育的影响。[结果]Doxycycline诱导Bmh1表达水平下调时严重抑制了细胞的生长。非Doxycycline诱导条件下Bmh1高表达强烈促进了细胞的菌丝发育。这一促进作用绕过了ras1、efg1、cph1和tec1等基因缺失的影响,却被flo8基因的缺失阻断。C末端缺失或更换异源C末端的所有Bmh1突变株在Doxycycline诱导时都能够正常生长,但是没有明显促进菌丝发育。[结论]验证了白念珠菌14-3-3蛋白Bmh1是细胞生长所必需的,证明了Tet-off启动子可以严密控制Bmh1的表达水平。Bmh1是一个菌丝发育的正调控因子,位于Ras1、Efg1、Cph1和Tec1的下游,Flo8的上游。Bmh1的保守结构域是细胞生长所必需的,而C末端则是生长非必需的。
关键词: 白念珠菌 14-3-3 Bmh1 菌丝发育
Functions of 14-3-3 protein Bmh1 in cell growth and hyphal development of Candida albicans
Hua Yin1, Jiangye Chen2, Peng Chang1
1.Research Center of Bioenergy & Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, China;
2.Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
Received 13 February 2018; Revised 31 March 2018; Published online 26 April 2018
*Corresponding author: Peng Chang, Tel:+86-23-68250994, E-mail:cp1986@swu.edu.cn
Supported by the Fundamental Research Funds for the Central Universities (XDJK2017C083) and by the Chongqing Postdoctoral Science Foundation (Xm2017023)
Abstract: [Objective]We studied the roles of 14-3-3 protein Bmh1 of Candida albicans in its cell growth and hyphal development by using a Tet-off promoter.[Methods]Based on the URA3+ strain SN152 of C. albicans, we deleted one BMH1 allele and replaced the promoter of the other allele with the Tet-off promoter, generating a strain in which Bmh1 expression was controlled by Doxycycline. Then we explored the phenotypes of cell growth and hyphal development via spot analysis and morphological observations. Further, we preliminarily studied the position of Bmh1 in the network of hyphal development regulation via overexpression of Bmh1 in the mutants of ras1, flo8, efg1, cph1 and tec1, which were very important hyphal development regulators. Finally, we constructed some Bmh1 mutants with different C-terminals and detected their effects on cell growth and hyphal development of Candida albicans.[Results]Doxycycline-induced knockdown of Bmh1 inhibited cell growth severely. Highly-expressed Bmh1 improved hyphal development significantly without Doxycycline induction. This improvement bypassed the effects of ras1, efg1, cph1 and tec1 gene deletions and was blocked by flo8 deficiency. All Bmh1 mutants with C-terminal deletion or heterologous C-terminals grew normally with Doxycycline induction and the hyphal development was not improved obviously.[Conclusion]We validated that the 14-3-3 protein Bmh1 of Candida albicans is essential for cell growth, proving the tight controlling of the Tet-off promoter on Bmh1 expression. Bmh1 functions as a positive regulator of hyphal development and plays roles in the downstream of Ras1, Efg1, Cph1 and Tec1, and in the upstream of Flo8. The conserved domain of Bmh1 is required for cell growth while the C-terminal is not.
Keywords: Candida albicans 14-3-3 Bmh1 hyphal development
白念珠菌(Candida albicans)是一类广泛存在于人类和温血动物的皮肤和粘膜等处的机会性致病真菌。在由于严重疾病或衰老导致的免疫功能低下或缺陷的病人中能够发展成为系统性白念珠菌感染,从而导致较高的死亡率[1]。因此,研究白念珠菌的致病机制对解决这一严重致病威胁是非常重要的。白念珠菌能够因应不同的环境刺激形成不同的细胞形态,即酵母态和菌丝态,并可在两种形态之中快速转换[2]。这一形态转换的功能与其致病能力紧密相关。白念珠菌的菌丝发育过程是通过严密复杂的转录调控网络来实现的[3]。鉴定和发现参与这一菌丝发育调控网络的转录因子以及相关蛋白,有助于深刻理解白念珠菌的致病机理。
14-3-3蛋白通过不同的分子作用机制在众多细胞进程中发挥了非常关键的作用,包括细胞生长与增殖、细胞分化、信号传导、蛋白运输、细胞凋亡和转录调控[4]。14-3-3蛋白家族在所有真核物种中都是非常保守的,其结构的保守性导致其在不同物种中的功能大同小异[5-6]。在人类细胞中14-3-3蛋白家族有7个成员[7],其功能和晶体结构都已经被很好地解析[6]。在酿酒酵母中,14-3-3蛋白家族只有2个成员,即ScBmh1和ScBmh2。二者绝大部分功能重叠且参与了细胞生长分化和转录调控[8-9],特别是在假菌丝诱导和芽孢生长过程中发挥了关键作用[10]。在新型隐球菌中,其唯一的14-3-3蛋白是其毒力和生长所必需的[11]。
白念珠菌对不同环境因子的应答适应是其致病能力的关键所在,其中包括了上述多个细胞进程的共同协作。14-3-3蛋白作为一个作用广泛的调控蛋白,极有可能参与了这些进程的协同调控。在白念珠菌中,只存在1个14-3-3蛋白,即CaBmh1,且是细胞生长和菌丝发育所必需的[12]。通过随机突变构建一系列的Bmh1点突变体和基于MAL2启动子的条件性表达菌株,Palmer等发现Bmh1在白念珠菌细胞生长和菌丝发育过程中的功能是相对独立的[13-14]。进一步地,他们发现每种Bmh1突变体对菌丝发育诱导信号的应答不一样,暗示Bmh1在多个菌丝诱导信号途径中发挥作用[15]。
但是,这些报道主要研究了Bmh1表达量下调(knockdown)或失能(dysfunction)对白念珠菌生长和菌丝发育的影响,并没有阐述Bmh1高表达时的作用,也没有分析Bmh1在菌丝发育调控网络中的地位。本研究中,我们构建了Tet-off启动子控制Bmh1表达的白念珠菌菌株并进行了菌丝发育研究。通过研究抑制条件和非抑制条件下细胞的生长和菌丝发育表型,我们发现Bmh1是一个菌丝发育的正调控因子,作用于菌丝发育调控网络中Ras1、Efg1、Cph1和Tec1的下游,Flo8的上游。而且其非保守的C末端则是生长非必需的。这些结果丰富了白念珠菌Bmh1在细胞生长与菌丝发育中的功能研究,有助于对菌丝发育调控网络的进一步认识。
1 材料和方法 1.1 菌株与质粒 本研究中所使用的菌株、质粒如表 1所示。
表 1. 本文所用菌株与质粒 Table 1. Strains and plasmids used in this study
Strains and plasmids | Characteristics | Sources |
Strains | ||
SN152 | his1 leu2 arg4 | [16] |
CAI4 | ura3 | [17] |
CPS42 | BMH1/bmh1::CmLEU2 | This study |
CPS43 | PTet-off-BMH1/bmh1 CmLEU2 HIS1 | This study |
CPS179 | BMH1/PTet-off -BMH1 URA3 | This study |
CPS64 | ras1/ras1 BMH1/PTet-off -BMH1 URA3 | This study |
CPS65 | flo8/flo8 BMH1/PTet-off -BMH1 URA3 | This study |
CPS184 | efg1/efg1 BMH1/PTet-off -BMH1 URA3 | This study |
CPS185 | cph1/cph1 BMH1/PTet-off -BMH1 URA3 | This study |
CPS193 | tec1 α HIS1, BMH1/PTet-off -BMH1 URA3 | This study |
CPS105 | bmh1/ PTet-off -BMH1 ade2::ADH1p ARG4 HIS1 CmLEU2 | This study |
CPS187 | bmh1/ PTet-off -BMH1 ade2::ADH1p-BMH1 ARG4 HIS1 CmLEU2 | This study |
CPS106 | bmh1/ PTet-off -BMH1 ade2::ADH1p-BMH1-t0 ARG4 HIS1 CmLEU2 | This study |
CPS107 | bmh1/ PTet-off -BMH1 ade2::ADH1p-BMH1-t1 ARG4 HIS1 CmLEU2 | This study |
CPS108 | bmh1/ PTet-off -BMH1 ade2::ADH1p-BMH1-t2 ARG4 HIS1 CmLEU2 | This study |
CPS109 | bmh1/ PTet-off -BMH1 ade2::ADH1p-BMH1-t3 ARG4 HIS1 CmLEU2 | This study |
CPS110 | bmh1/ PTet-off -BMH1 ade2::ADH1p-BMH1-t4 ARG4 HIS1 CmLEU2 | This study |
CPS111 | bmh1/ PTet-off -BMH1 ade2::ADH1p-BMH1-t5 ARG4 HIS1 CmLEU2 | This study |
Plasmids | ||
pCPC42 | URA3 PTet-off | This study |
pCPC43 | HIS1 PTet-off | This study |
pCPC48 | loxP-CmLEU2-loxP | This study |
pCPC70 | BMH1 (–781 to +1761) in pUC18 backbone | This study |
pCPC101 | PTet-off-BMH1 HIS1 | This study |
pCPC86 | PTet-off-BMH1 URA3 | This study |
pCPC20 | ade2::ADH1p ARG4 | This study |
pCPC203 | ade2::ADH1p-BMH1 ARG4 | This study |
pCPC111 | ade2::ADH1p-BMH1-t0 ARG4 | This study |
pCPC112 | ade2::ADH1p-BMH1-t1 ARG4 | This study |
pCPC113 | ade2::ADH1p-BMH1-t2 ARG4 | This study |
pCPC114 | ade2::ADH1p-BMH1-t3 ARG4 | This study |
pCPC115 | ade2::ADH1p-BMH1-t4 ARG4 | This study |
pCPC116 | ade2::ADH1p-BMH1-t5 ARG4 | This study |
表选项
1.2 引物 本研究中所用的引物由生工生物工程(上海)股份有限公司合成,采用HAP纯化方式,见表 2。
表 2. 本研究中所用的主要引物 Table 2. Primers used in this study
Primers | Sequences (5′→3′) |
BMH1-781s | ACAGTCTGCCAGACTTGATTGCATAGAGAGGGTGGA |
BMH1+1761a | CTGACTGACTGACTGCCGCGCGTAACAAAACTT |
pUC18+800s | CAGTCAGTCAGTCAGGATAACGCAGGAAAGAACAT |
pUC18+2628a | AGTCTGGCAGACTGTCTTAAGGGATCCAAGCTTCCCGGGTTCTTAGACGTCAGGTGGCA |
CaP8 | CGTCCACGAAACGTTGAGAAAGAGGAGTATTGGCATTG |
CaP9 | TGACAATGATTACCTATTTATATTTGTATGTGTGTAGGAGT |
BMH1+1s | AGGTAATCATTGTCAATGCCAGCCTCCCGTGAAGAT |
BMH1-42a | AACGTTTCGTGGACGGATGTTTTTGACTGTAACTTGAGATG |
BMH1-425s | TTTTTCGGACCATTTTGCAC |
BMH1+419a | TCAGCGATAGCAAATTCAGC |
BMH1+882a | CAATGGCACTACAGCCAGCCAATGATAAGAACTTAAATGAA |
CaP22 | TTGGACGCAGCCAAATCAC |
CaP23 | TGAGTTCAAATGGCACACCAA |
CaP19 | GCTGTAGTGCCATTGCATTGTTCACCACAAATGTTTCT |
CaP28 | TGACAATGATTACCTATGGTAGCGATGCACGGT |
BMH1+705a | GTAGCGATGCACGGTCTATAAATCGGTCCATAAAGTCAAGTTA |
ACT1+1765s | ACCGTGCATCGCTACCATTGTTCACCACAAATGTTTCT |
BMH1+699a-t1R | CCGGCTTCTTCATCTTGTTGATCTGAGGTCCATAAAGTCAAGTTATCTCTCAA |
ACT1+1765s-t1F | AAGATGAAGAAGCCGGGGAAGGTAACTAGCATTGTTCACCACAAATGTTTCT |
BMH1+699a-t2R | CCCTTGCATATCTGAGGTCCATAAAGTCAAGTTATCTCTCAA |
ACT1+1765s-t2F | GAAGATGAAAACCAATAGCATTGTTCACCACAAATGTTTCT |
BMH1-t2F | TCAGATATGCAAGGGGATGGTGAGGAGCAAAATAAAGAAGCATTGCAGGATGTG |
BMH1-t2R | TTGGTTTTCATCTTCCACATCCTGCAATGCTTCTTTATTTTGCTCCTCACCATC |
BMH1+699a-t3R | TGATCCTCTTGGCCTGACTCACTGATGTCTGAGGTCCATAAAGTCAAGTTATCTCTCAA |
ACT1+1765s-t3F | CCCGCGGAACAGACACAAGGAGAACCGACTAAATAGCATTGTTCACCACAAATGTTTCT |
BMH1-t3F | AGGCCAAGAGGATCAACAGCAACAGCAGCAACAGCAACAACAGCAGCAACAACAGCAGC |
BMH1-t3R | TGTCTGTTCCGCGGGAGCTTGCTGCTGCTGTTGTTGCTGCTGTTGTTGCTGTTGCTGCT |
BMH1+705a-t4R | TCACGTTGTCTACGACCACCCCCACCAGCCATTAAATCGGTCCATAAAGTCAAGTTA |
ACT1+1765s-t4F | TCGTAGACAACGTGATGCACCAGCTAAAAAATAGCATTGTTCACCACAAATGTTTCT |
BMH1+705a-t5R | ATCAGCAGATCGTCCACCACCACCTGCCATTAAATCGGTCCATAAAGTCAAGTTA |
ACT1+1765s-t5F | GGACGATCTGCTGATGAACCAGCTAAGAAGTAGCATTGTTCACCACAAATGTTTCT |
表选项
1.3 质粒和菌株构建 本文中所有质粒的构建都采用了基于Exo Ⅲ的非连接酶依赖的15 bp重叠区重组克隆方法(LIC)[18]。质粒测序均由上海美吉生物科技公司完成。白念珠菌基因敲除应用了Overlap PCR片段快速基因敲除方案[16]。白念珠菌转化采用了修改后的LiAc转化法[19]。所有转化子均通过Colony PCR鉴定。pCPC48中的CmLEU2基因盒插入替代了菌株SN152的BMH1基因编码区+184至+304区域,产生了BMH1单拷贝缺失株CPS42。BMH1及其上下游序列(–781至+1761)由引物BMH1-781s与BMH1+1761a从SN152的基因组DNA扩增获得,然后与引物pUC18+800s及pUC18+2628a扩增的pUC18载体核心片段通过LIC方法重组得到pCPC70。引物CaP8和CaP9用于从pCPC42、pCPC43中扩增PTet-off启动子,分别与引物BMH1+1s与BMH1-42a扩增的pCPC70载体骨架通过LIC方法重组得到pCPC86与pCPC101。用引物BMH1-425s与BMH1+419a从pCPC86与pCPC101分别扩增URA3-PTet-off-BMH1和HIS1- PTet-off-BMH1。用HIS1-PTet-off-BMH1片段转化CPS42,得到CPS43。用URA3-PTet-off-BMH1片段转化CAI4以及ras1、flo8、efg1、cph1、tec1等基因缺失突变体,分别得到了CPS179、CPS64、CPS65、CPS184、CPS185、CPS193。从SN152基因组DNA用引物BMH1+1s与BMH1+882a扩增得到野生型BMH1,然后与CaP19和CaP28扩增的pCPC20载体骨架通过LIC方法重组得到pCPC203。引物BMH1+705a与ACT1+1765s用于突变pCPC203产生pCPC111。引物BMH1+699a- t1R与ACT1+1765s-t1F用于突变pCPC203产生pCPC112。引物BMH1+699a-t2R、ACT1+1765s-t2F、BMH1-t2F与BMH1-t2R用于突变pCPC203产生pCPC113。引物BMH1+699a-t3R、ACT1+1765s-t3F、BMH1-t3F与BMH1-t3R用于突变pCPC203产生pCPC114。引物BMH1+705a-t4R与ACT1+1765s-t4F用于突变pCPC203产生pCPC115。引物BMH1+ 705a-t5R与ACT1+1765s-t5F用于突变pCPC203产生pCPC116。以pCPC20、pCPC203、pCPC111– pCPC116为PCR模板,用引物CaP22与CaP23扩增的产物分别转化CPS43,得到CPS105、CPS187、CPS106–CPS111。
1.4 细胞生长与形态学表型分析 白念珠菌的常规培养使用通用YPD培养基,30 ℃、240 r/min振荡培养。Doxycycline hydrochloride购自生工生物工程(上海)股份有限公司。
斑点实验:将过夜培养至平台期的白念珠菌培养物稀释数倍后测OD600,换算得到母液的OD600值。然后用无菌水稀释至OD600=1。按照10倍梯度稀释至OD600值为10–1、10–2、10–3、10–4。将每种稀释液2.5 μL依次滴加于含适当培养基的平板上,置于25 ℃培养并拍照。
在白念珠菌包埋实验(YPS培养基)形态观察中,挑取单菌落于YPD培养基中,30 ℃培养过夜后,按照4×104 CFU/mL (CFU:菌落形成单位)转接到新鲜的YPD培养基中,30 ℃培养4 h。然后将400 CFU的菌液和未凝固的40–60 ℃恒温的YPS琼脂(2% tryptone、1% yeast extract、2% sucrose、1% Agar)培养基混合均匀并铺板,在25 ℃或37 ℃培养2–5 d。在解剖镜下观察菌落形态并拍照。
2 结果和分析 2.1 Tet-off启动子能够严密控制Bmh1表达 白念珠菌Bmh1是一个结构非常简单的蛋白,由非常保守的N端14-3-3 superfamily结构域和非保守的C端尾巴组成。由于BMH1已经被证明是必需基因,因而构建基因缺失株是不可能的。Tet-off系统是一个严谨高效的诱导型基因表达调控系统[20-21]。本研究采用的pCPC43质粒,含有白念珠菌密码子优化的Tet-off启动子系统,其整体Tet-off启动子结构图参见图 1-A。白念珠菌密码子优化的TetR (tetracycline repressor),与转录激活元件GAL4AD组装成融合表达的基因caTetR-caGAL4AD,即catTA (C. albicans tetracycline-controlled transactivator)并置于白念珠菌稳定高表达的ADH1启动子和ACT1终止子控制下。HIS1基因作为营养缺陷型筛选标记。TetR应答元件Ptet置于HIS1基因之后。在细胞中,TetR-Gal4AD融合蛋白catTA是组成型高表达的。在Doxycycline (Dox)不存在时,catTA持续结合到Ptet,起始下游基因的转录,实现下游基因的高表达。在Dox存在时,catTA与Dox结合,不能结合到Ptet,造成下游基因不能转录而产生抑制效应。
图 1 加入Dox使BMH1表达水平下调时细胞生长被抑制 Figure 1 Cell growth was inhibited when BMH1 was knocked down by adding Dox. A: Schematic depiction of the Tet-off promoter controlled BMH1 strain. One BMH1 allele was disrupted by the selection marker gene CmLEU2. The Tet-off promoter was integrated into the upstream region of the other BMH1 allele to replace its native promoter. BMH1 will be transcribed without Dox and the transcription will be inhibited in the presence of Dox. B: The cell growth of the PTet-off-BMH1/bmh1 mutant was severely repressed in the presence of Dox. Overnight-cultured cells were diluted to OD600=1 and were then serially diluted by 10-fold. 2.5 μL of each dilution of WT (SN152), BMH1/bmh1 mutant (CPS42) and PTet-off-BMH1/bmh1 mutant (CPS43) were spotted onto YPD plates with/without 50 μg/mL Dox and incubated at 25 ℃. WT: Wild-type. |
图选项 |
为了构建PTet-off启动子控制的BMH1条件表达菌株,在SN152菌株中我们利用PCR方法先用CmLEU2基因盒将BMH1的一个拷贝敲除,然后将PTet-off启动子同源整合替换了另一个BMH1拷贝的原生启动子。这样得到的菌株在没有Dox存在时可以高表达Bmh1,在Dox存在时则不能表达Bmh1 (图 1-A)。然后我们测试了该菌株和对照菌株在常规培养条件下(YPD,30 ℃)的生长能力。如图 1-B所示,在不含Dox的YPD培养基上,野生型菌株SN152 (BMH1/BMH1)、单拷贝缺失菌株BMH1/bmh1(CPS42)和Tet-off菌株PTet-off-BMH1/bmh1 (CPS43)的生长趋势没有明显差别。在YPD+50 μg/mL Dox的培养基上,PTet-off-BMH1/bmh1菌株的生长受到了显著抑制,而BMH1/bmh1菌株则与野生型SN152一样正常生长。这个结果说明Bmh1的确是白念珠菌细胞生长所必需的,其表达水平下调导致细胞生长被抑制。这与先前的报道一致[12-13]。这个结果说明我们构建的这个菌株中Tet-off启动子能够严密地控制BMH1的表达。
2.2 高表达的白念珠菌Bmh1促进菌丝发育 证明了Tet-off启动子可以严密控制BMH1的表达水平之后,我们检测了该菌株在Dox诱导和非诱导条件下的菌丝发育能力。如图 2-A所示,在YPD中37 ℃ (生理温度)培养时,野生型菌株SN152在菌落中间形成了假菌丝(pseudohyphae),BMH1单拷贝缺失菌株BMH1/bmh1则形成光滑的单克隆。这说明BMH1的单拷贝缺失就足以导致其菌丝发育能力的受损,这与之前的报道是一致的[14]。有趣的是,PTet-off-BMH1/bmh1菌株形成了菌丝发育极好的菌落。由于没有Dox存在时,Bmh1的表达水平极高,说明高表达的Bmh1在生理温度时能够强烈促进白念珠菌的菌丝发育。
图 2 高表达的Bmh1强烈促进菌丝发育 Figure 2 Overexpressed Bmh1 improved filamentation significantly. A: The PTet-off-BMH1/bmh1 strain grew hyperfilamentous colonies on YPD plates at 37 ℃ in the absence of Dox. Cells of the three strains were streaked out directly on YPD plates and incubated at 37 ℃. B: The PTet-off-BMH1/bmh1 strain grew excellent filamentous colonies under embedded condition (microaerobic for weak hypha induction) which was inhibited by adding Dox. Cells were embedded with YPS +/–20 μg/mL Dox and incubated at 25 ℃. C: The improvement of filamentation by highly expressed Bmh1 was blocked by deleting flo8. The PTet-off promoter cassette containing a URA3 marker was introduced into the ras1, flo8, efg1, cph1 and tec1 mutants to replace the native promoter of one BMH1 allele and then cells were streaked out on YPD plates and incubated at 25 ℃ (yeast growth condition). WT: Wild-type strain SN152. "+" means that the Tet-off promoter was introduced in the strain while "–" means not. |
图选项 |
接着,我们进行了YPS包埋(微氧诱导菌丝发育)形态学实验。由于50 μg/mL Dox能够强烈抑制细胞的生长,因此,我们降低Dox浓度至20 μg/mL,以在细胞生长不被显著抑制的条件下观察菌丝发育。如图 2-B所示,野生型菌株在YPS +/– 20 μg/mL Dox、25 ℃的条件下都不能形成菌丝。而PTet-off-BMH1/bmh1菌株在不含Dox的YPS包埋条件下,形成了发育极好的菌丝。在Dox存在时,PTet-off-BMH1/bmh1菌株的菌丝发育被极大地抑制,但是仍有少量菌丝形成。这是因为所用的Dox浓度较低,未达到有效抑制浓度(50 μg/mL),因而抑制Bmh1表达的效果并不彻底。这一结果表明高表达的Bmh1在微氧条件下能够极大地促进菌丝发育,这一促进作用因Dox诱导的Bmh1表达下调而被抑制。
白念珠菌的菌丝发育过程受到多条信号通路的调控,包括MAPK途径(mitogen-activated protein kinase pathway);cAMP/PKA途径(cAMP-dependent protein kinase A pathway);由Rim8、Rim101介导的pH应答途径;由组氨酸激酶Sln1p、Nik1p/Cos1p和Chk1p组成的二元信号途径(two-component signaling pathway);基质内生长时Czf1、Efg1介导的菌丝发育促进途径;Rbf1介导的菌丝发育抑制;Efg1和Cph2调控的Tec1转录因子途径;通过DNA结合蛋白Nrg1和Rfg1介导的转录抑制因子Tup1抑制途径等[22]。了解Bmh1在白念珠菌菌丝发育转录调控网络中的位置,有助于进一步研究其参与菌丝发育调控的分子机制。因此,我们选择了几个重要的菌丝发育调控因子,即ras1、flo8、efg1、cph1和tec1的基因缺失株,在其细胞中高表达Bmh1并观察了细胞的菌丝发育能力。这些转录因子主要参与了MAPK途径、cAMP途径、Tec1途径和Czf1途径。
我们用含有URA3基因的PTet-off启动子替换了这些缺失株其中一个BMH1拷贝的原生启动子。然后以未替换启动子的菌株为对照,我们检测了这些菌株的菌丝发育能力。如图 2-C所示,在YPD、25 ℃ (酵母态生长)条件下,未引入PTet-off-BMH1的野生型(SN152)和这5个突变株都只能形成表面光滑的菌落,而导入了PTet-off-BMH1的野生型(CPS179)、ras1 (CPS64)、efg1 (CPS184)、cph1 (CPS185)和tec1 (CPS193)菌株等则形成了褶皱或绒球状的菌丝发育良好的菌落。这说明高表达Bmh1对菌丝发育的促进作用绕过了ras1、efg1、cph1和tec1缺失的影响。但是在flo8缺失株中导入PTet-off-BMH1时,该菌株(CPS65)形成了中心略带褶皱的菌落(即pseudohyphae),说明高表达Bmh1对菌丝发育的促进作用能被flo8缺失极大地阻断。这个结果意味着在菌丝发育信号转导途径中Bmh1可能位于Flo8的上游,位于Ras1、Efg1、Cph1和Tec1的下游。
2.3 白念珠菌C末端结构不影响细胞生长 14-3-3蛋白在所有真核生物中都是高度保守的。我们未发表的蛋白晶体结构数据表明,CaBmh1的14-3-3 superfamily结构域的晶体结构与酿酒酵母及人的14-3-3几乎一样。在酿酒酵母中,14-3-3蛋白的C端显示了跟其他物种14-3-3蛋白明显不同的结构[23]。此外,酿酒酵母14-3-3蛋白的转录调控活性需要C端氨基酸残基的参与[24]。而白念珠菌Bmh1的N端保守结构域与C端非保守结构域对于其在细胞生长和菌丝发育中功能贡献还未被阐释。
为了探索Bmh1的14-3-3 superfamily保守区域(1–235 aa)和C端区域对Bmh1功能的贡献,我们构建了一系列的BMH1突变体和嵌合体,如图 3-A所示。这些突变体含有不同的C端序列,分别来自人14-3-3蛋白η和ε,酿酒酵母Bmh2和2个基于14-3-3结合基序的用于14-3-3蛋白结晶的结合肽段[7]。通过将野生型BMH1与BMH1- t0–t5置于ADH1启动子控制下,并导入到PTet-off-BMH1/bmh1菌株的ADE2基因位点中(图 3-B),我们得到了既可以用Dox控制BMH1表达水平又有异位过表达BMH1嵌合体的菌株。
图 3 Bmh1的C端改变不影响细胞生长 Figure 3 C-terminal region variations of Bmh1 did not affect cell growth. A: Schematic depiction of Bmh1 mutants and chimeras with heterologous C-terminal tails. B: Genotypes of different BMH1 variant strains. BMH1 variants was controlled by the ADH1 promoter and was introduced into the ADE2 locus for over-expression. C: Bmh1 variant strains grew normally under yeast growth condition (YPD, 25 ℃). Cells were streaked out on YPD +/– 50 μg/mL Dox plates and incubated at 25 ℃. Vec: empty vector pCPC20. |
图选项 |
然后我们检测了这些菌株在酵母态生长条件(YPD,25 ℃)下的表型。如图 3-C所示,在没有Dox存在时,野生型(SN152)细胞形成光滑的菌落,而转入Vec (empty vector pCPC20)的菌株(CPS105)、转入BMH1的菌株(CPS187)和转入BMH1-t0–t5变体的PTet-off-BMH1菌株(CPS106– CPS111)则全部形成了不规则的菌丝型菌落。在Dox存在时,野生型菌株依然形成光滑的菌落。而转入空载pCPC20的PTet-off-BMH1菌株(CPS105)生长受到明显抑制,转入了BMH1-t0–t5变体的PTet-off-BMH1菌株则生长正常,与转入完整BMH1的菌株CPS187一致。因为此时野生型BMH1表达被严密抑制,转入空载的菌株生长被抑制是合理的。过表达BMH1-t0的菌株生长正常,说明此Bmh1变体回补了BMH1转录抑制对细胞生长的影响,证明Bmh1的C端区域缺失不影响细胞生长。过表达BMH1-t1–t5变体的菌株正常生长,说明Bmh1在细胞生长中的功能主要是由N端的14-3-3 superfamily结构域提供,而C端的结构变化不影响细胞生长。
3 讨论 白念珠菌只有1个14-3-3蛋白即Bmh1,已经被证明其表达水平下调或点突变导致的功能失活会造成细胞生长和菌丝发育的抑制,是细胞生长所必需的。但是过表达的Bmh1对菌丝发育的影响还没有报道。我们采用了Tet-off启动子系统来调控Bmh1的表达。使用这一启动子系统的好处在于:(1)试验过程中培养基成分保持不变,仅需要添加Dox即可实现严格的抑制效果;(2)在无Dox存在时,Tet-off启动子能够高水平表达被控制的基因,因此常规培养条件即为高表达条件。Dox存在和不存在时,被调控基因的表达水平差别为400–1000倍[21]。因此,这一系统仅通过是否添加Dox就能实现在相同营养培养基中目标基因的knockdown和knockup两个方面的调控,因此可以极大地方便其他生长必需的功能基因的研究。
通过构建Tet-off启动子控制的条件性表达Bmh1的菌株,我们也证实了Bmh1表达水平下调导致了细胞生长被强烈抑制,说明我们构建的这个Tet-off启动子控制系统能够严密控制Bmh1的表达水平,证明了Tet-off调控Bmh1表达水平的严谨性和有效性。
进一步地,我们研究发现在无Dox诱导抑制时,高表达的Bmh1能够强烈促进菌丝发育。这一促进作用能够被添加Dox导致的Bmh1表达水平下调所抑制。由于野生型BMH1是稳定表达的基因,单拷贝缺失株BMH1/bmh1和野生型相比BMH1表达量必定减少,而在PTet-off-BMH1/bmh1菌株中BMH1则是高表达状态,对应的菌丝发育表型也从弱到强,因而Bmh1是菌丝发育的正调控因子,其促进作用与其表达水平紧密相关。
高表达Bmh1对菌丝发育的促进作用绕过了ras1、efg1、cph1和tec1缺失的影响,说明在菌丝发育调控网络中,Bmh1可能位于Ras1、Efg1、Cph1和Tec1的下游。高表达Bmh1对菌丝发育的促进作用能被flo8缺失极大地阻断,说明Bmh1可能位于Flo8的上游。这样的结果暗示Bmh1极有可能参与了不同信号调控途径的交叉协调。我们相信,利用这一个Tet-off启动子控制Bmh1表达的系统,后续可以更加方便地对Bmh1在信号调控途径中的协同调控作用进行研究。
过表达C端缺失的Bmh1ΔC和其他的Bmh1嵌合体能够回补PTet-off-BMH1/bmh1菌株在Dox存在时的生长缺陷表型,说明Bmh1的14-3-3 superfamily结构域是细胞生长所必需的,而C端则是非必需的。这一结果是合理的,因为在所有的14-3-3同源物中N端14-3-3 superfamily结构域都高度保守,而不同物种甚至同一物种中的不同isoform,其C末端氨基酸组成变化都非常大。过表达野生型Bmh1不能回补PTet-off-BMH1/bmh1菌株在Dox存在时的菌丝发育缺陷表型,这可能是由于ADH1启动子的表达水平远低于PTet-off启动子在无Dox存在时的表达水平造成的。因此,我们目前还不能推断Bmh1的2个结构域在菌丝发育中的功能贡献。考虑到酿酒酵母14-3-3蛋白的C端在转录调控中的重要作用,白念珠菌Bmh1的C端是否可能在菌丝发育调控过程中发挥一定的功能仍需要进一步的实验探究。
References
[1] | Mccullough MJ, Ross BC, Reade PC. Candida albicans: a review of its history, taxonomy, epidemiology, virulence attributes, and methods of strain differentiation. International Journal of Oral and Maxillofacial Surgery, 1996, 25(2): 136-144. DOI:10.1016/S0901-5027(96)80060-9 |
[2] | Noble SM, Johnson AD. Genetics of Candida albicans, a diploid human fungal pathogen. Annual Review of Genetics, 2007, 41(1): 193-211. DOI:10.1146/annurev.genet.41.042007.170146 |
[3] | Lu Y, Su C, Liu HP. Candida albicans hyphal initiation and elongation. Trends in Microbiology, 2014, 22(12): 707-714. DOI:10.1016/j.tim.2014.09.001 |
[4] | Aghazadeh Y, Papadopoulos V. The role of the 14-3-3 protein family in health, disease, and drug development. Drug Discovery Today, 2016, 21(2): 278-287. DOI:10.1016/j.drudis.2015.09.012 |
[5] | Obsilova V, Kopecka M, Kosek D, Kacirova M, Kylarova S, Rezabkova L, Obsil T. Mechanisms of the 14-3-3 protein function: regulation of protein function through conformational modulation. Physiological Research, 2014, 63 Suppl 1: S155-S164. |
[6] | Obsil T, Obsilova V. Structural basis of 14-3-3 protein functions. Seminars in Cell & Developmental Biology, 2011, 22(7): 663-672. |
[7] | Yang XW, Lee WH, Sobott F, Papagrigoriou E, Robinson CV, Grossmann JG, Sundstr?m M, Doyle DA, Elkins JM. Structural basis for protein-protein interactions in the 14-3-3 protein family. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(46): 17237-17242. DOI:10.1073/pnas.0605779103 |
[8] | Parua PK, Dombek KM, Young ET. Yeast 14-3-3 protein functions as a comodulator of transcription by inhibiting coactivator functions. Journal of Biological Chemistry, 2014, 289(51): 35542-35560. DOI:10.1074/jbc.M114.592287 |
[9] | van Heusden GPH, Griffiths DJF, Ford JC, Chin-A-Woeng TFC, Schrader PAT, Carr AM, Steensma HY. The 14-3-3 proteins encoded by the BMH1 and BMH2 genes are essential in the yeast Saccharomyces cerevisiae and can be replaced by a plant homologue. European Journal of Biochemistry, 1995, 229(1): 45-53. DOI:10.1111/ejb.1995.229.issue-1 |
[10] | Trembley MA, Berrus HL, Whicher JR, Humphrey-Dixon EL. The yeast 14-3-3 proteins BMH1 and BMH2 differentially regulate rapamycin-mediated transcription. Bioscience Reports, 2014, 34(2): e00099. |
[11] | Li JB, Chang YC, Wu CH, Liu J, Kwon-Chung KJ, Huang SH, Shimada H, Fante R, Fu XW, Jong A. The 14-3-3 gene function of Cryptococcus neoformans is required for its growth and virulence. Journal of Microbiology and Biotechnology, 2016, 26(5): 918-927. DOI:10.4014/jmb.1508.08051 |
[12] | Cognetti D, Davis D, Sturtevant J. The Candida albicans 14-3-3 gene, BMH1, is essential for growth. Yeast, 2002, 19(1): 55-67. DOI:10.1002/(ISSN)1097-0061 |
[13] | Palmer GE, Johnson KJ, Ghosh S, Sturtevant J. Mutant alleles of the essential 14-3-3 gene in Candida albicans distinguish between growth and filamentation. Microbiology, 2004, 150(6): 1911-1924. DOI:10.1099/mic.0.26910-0 |
[14] | Palmer GE, Sturtevant JE. Random mutagenesis of an essential Candida albicans gene. Current Genetics, 2004, 46(6): 343-356. DOI:10.1007/s00294-004-0538-0 |
[15] | Kelly MN, Johnston DA, Peel BA, Morgan TW, Palmer GE, Sturtevant JE. Bmh1p (14-3-3) mediates pathways associated with virulence in Candida albicans. Microbiology, 2009, 155(5): 1536-1546. DOI:10.1099/mic.0.027532-0 |
[16] | Noble SM, Johnson AD. Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryotic Cell, 2005, 4(2): 298-309. DOI:10.1128/EC.4.2.298-309.2005 |
[17] | Fonzi WA, Irwin MY. Isogenic strain construction and gene mapping in Candida albicans. Genetics, 1993, 134(3): 717-728. |
[18] | Li C, Evans RM. Ligation independent cloning irrespective of restriction site compatibility. Nucleic Acids Research, 1997, 25(20): 4165-4166. DOI:10.1093/nar/25.20.4165 |
[19] | Walther A, Wendland JXF. An improved transformation protocol for the human fungal pathogen Candida albicans. Current Genetics, 2003, 42(6): 339-343. DOI:10.1007/s00294-002-0349-0 |
[20] | Park Y, Morschh?user J. Tetracycline-inducible gene expression and gene deletion in Candida albicans. Eukaryotic Cell, 2005, 4(8): 1328-1342. DOI:10.1128/EC.4.8.1328-1342.2005 |
[21] | Nakayama H, Mio T, Nagahashi S, Kokado M, Arisawa M, Aoki Y. Tetracycline-regulatable system to tightly control gene expression in the pathogenic fungus Candida albicans. Infection and Immunity, 2000, 68(12): 6712-6719. DOI:10.1128/IAI.68.12.6712-6719.2000 |
[22] | Sudbery PE. Growth of Candida albicans hyphae. Nature Reviews Microbiology, 2011, 9(10): 737-748. DOI:10.1038/nrmicro2636 |
[23] | Veisova D, Rezabkova L, Stepanek M, Novotna P, Herman P, Vecer J, Obsil T, Obsilova V. The C-terminal segment of yeast BMH proteins exhibits different structure compared to other 14-3-3 protein isoforms. Biochemistry, 2010, 49(18): 3853-3861. DOI:10.1021/bi100273k |
[24] | Parua PK, Young ET. Binding and transcriptional regulation by 14-3-3 (Bmh) proteins requires residues outside of the canonical motif. Eukaryotic Cell, 2014, 13(1): 21-30. DOI:10.1128/EC.00240-13 |