删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于非定常机电转换系数的超磁致伸缩换能器输出振幅模型

清华大学 辅仁网/2017-07-07

基于非定常机电转换系数的超磁致伸缩换能器输出振幅模型
蔡万宠, 张建富, 郁鼎文, 吴志军, 冯平法
清华大学 机械工程系, 精密超精密制造装备及控制北京市重点实验室, 北京 100084
Equivalent amplitude model for a giant magnetostrictive transducer based on an unsteady electromechanical conversion coefficient
CAI Wanchong, ZHANG Jianfu, YU Dingwen, WU Zhijun, FENG Pingfa
Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要为实现对超磁致伸缩超声换能器输出振幅的准确预测,由换能器的等效电路推导得到输出振幅模型,并通过阻抗分析辨识出模型中的等效参数。为提高模型的准确性,研究了激励信号的频率和电压幅值对机电转换系数的影响。通过实验建立机电转换系数与激励频率的关系曲线,插值得到不同频率激励下换能器的机电转换系数,由振幅模型得到换能器输出振幅与激励电流幅值的关系曲线。结果表明:基于阻抗分析结果建立的振幅模型能够较准确地预测换能器在谐振状态下的输出振幅,验证了振幅模型的正确性。基于插值法得到的振幅-电流幅值曲线与实验结果一致,验证了所建立的机电转换系数与激励频率之间关系的正确性,提高了振幅模型在不同频率下的准确性。
关键词 超磁致伸缩换能器,振幅模型,机电转换系数,等效电路
Abstract:The vibration amplitude model of a giant magnetostrictive transducer was established using an equivalent circuit of the transducer. The model parameters were identified through an impedance analysis. The accuracy of the vibration amplitude model was improved by analyzing the effects of the frequency and amplitude of the excitation voltage on the electromechanical conversion coefficient. The relation between the excitation frequency and the electromechanical conversion coefficient was obtained experimentally. Then, the electromechanical conversion coefficient was calculated for various frequencies using interpolation to relate the vibration amplitude to the excitation current. Comparison with experimental results shows that the vibration amplitude model determined by the impedance analysis can be used to predict the transducer vibration at resonance. The interpolated electromechanical conversion coefficients can be used to calculate the vibration amplitudes so that the theoretical relations between the amplitude and the current for different excitation frequencies are consistent with experimental results, which indicates that the model has the proper relationships between the electromechanical conversion coefficient and the excitation frequency.
Key wordsgiant magnetostrictive transduceramplitude modelelectromechanical conversion coefficientequivalent circuit
收稿日期: 2016-06-21 出版日期: 2017-05-20
ZTFLH:TG663
通讯作者:张建富,副教授,zhjf@mail.tsinghua.edu.cnE-mail: zhjf@mail.tsinghua.edu.cn
引用本文:
蔡万宠, 张建富, 郁鼎文, 吴志军, 冯平法. 基于非定常机电转换系数的超磁致伸缩换能器输出振幅模型[J]. 清华大学学报(自然科学版), 2017, 57(5): 459-464.
CAI Wanchong, ZHANG Jianfu, YU Dingwen, WU Zhijun, FENG Pingfa. Equivalent amplitude model for a giant magnetostrictive transducer based on an unsteady electromechanical conversion coefficient. Journal of Tsinghua University(Science and Technology), 2017, 57(5): 459-464.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.22.021 http://jst.tsinghuajournals.com/CN/Y2017/V57/I5/459


图表:
图1 超磁致伸缩换能器结构及等效振动系统
表1 超磁致伸缩换能器的结构参数
图2 超磁致伸缩换能器的等效电路模型
图3 超磁致伸缩换能器的阻抗圆曲线
表2 超磁致伸缩换能器阻抗分析结果
表3 超磁致伸缩换能器等效参数
图4 振动实验装置
图5 不同激励频率下机电转换系数与电压幅值的关系
图6 平均机电转换系数与激励频率的关系
图7 激励频率为fs=19591Hz下输出振幅理论曲线与实验结果对比
表4 插值得到的机电转换系数
图8 不同激励频率下的振幅电流关系曲线


参考文献:
[1] WAN Yan, LIN Bin, WANG Shaolei, et al. Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing [J]. International Journal of Machine Tools and Manufacture, 2014, 77: 66-73.
[2] ZHU Yuchuan, JI Liang. Theoretical and experimental investigations of the temperature and thermal deformation of a giant magnetostrictive actuator [J]. Sensors and Actuators A, 2014, 218: 167-178.
[3] JIN Ke, KOU Yong, ZHENG Xiaojing. The resonance frequency shift characteristic of Terfenol-D rods for magnetostrictive actuators [J]. Smart Mater Struct, 2012, 21(4): 1-7.
[4] 袁惠群, 李莹, 李东, 等. 超磁致伸缩微致动器车削系统建模与控制[J]. 振动、测试与诊断, 2014, 34(2): 351-355. YUAN Huiqun, LI Ying, LI Dong, et al. Modelling and control for giant magnetostrictive micro-actuator turning system [J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(2): 351-355. (in Chinese)
[5] CAI Wanchong, FENG Pingfa, ZHANG Jianfu, et al. Effect of temperature on the performance of a giant magnetostrictive ultrasonic transducer [J]. Journal of Vibroengineering, 2016, 18(2): 1307-1318.
[6] Dapino M, Smith R, Flatau A. Structural magnetic strain model for magnetostrictive transducers [J]. IEEE Transactions on Magnetics, 2000, 36(3): 545-556.
[7] Wakiwaka H, Lio M, Nagumo M, et al. Impedance analysis of acoustic vibration element using giant magnetorestrictive material [J]. IEEE Trans Magn, 1992, 28(5): 2208-2210.
[8] HUANG Wenmei, WANG Bowen, CAO Shuying, et al. Dynamic strain model with eddy current effects for giant magnetostrictive transducer [J]. IEEE Transactions on Magnetics, 2007, 43(4): 1381-1384.
[9] 陶孟仑, 陈定方, 卢全国, 等. 超磁致伸缩材料动态涡流损耗模型及试验分析[J]. 机械工程学报, 2013, 48(13): 146-151. TAO Menglun, CHEN Dingfang, LU Quanguo, et al. Eddy current losses of giant magnetostrictor: Modeling and experimental analysis [J]. Journal of Mechanical Engineering, 2013, 48(13): 146-151. (in Chinese)
[10] Calkins F. Design, Analysis, and Modeling of Giant Magnetostrictive Transducers [D]. Ames, IO: Iowa State University, 1997.
[11] 孙波, 季远, 李光军, 等. 功率超声换能器导纳特性检测及电端匹配研究[J]. 振动、测试与诊断, 2002, 22(4): 287-290.SUN Bo, JI Yuan, LI Guangjun, et al. A study of on-line measurement of admittance characteristics and electric matching of power ultrasonic transducer [J]. Journal of Vibration, Measurement & Diagnosis, 2002, 22(4): 287-290. (in Chinese)
[12] Woollett R S. Effective coupling factor of single degree of freedom transducers [J]. Journal of the Acoustical Society of America, 1966, 40: 1112-1123.


相关文章:
[1]申昊, 冯平法, 张建富, 郁鼎文, 吴志军. 超声振动系统非接触式高效电能传输的电路补偿[J]. 清华大学学报(自然科学版), 2015, 55(7): 728-733.
[2]于华龙,赵争鸣,袁立强,鲁挺,姬世奇. 高压IGBT串联变换器直流母排设计与杂散参数分析[J]. 清华大学学报(自然科学版), 2014, 54(4): 540-545.

相关话题/机电 实验 系统 测试 电压