删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

卫星高速数传系统相位噪声迭代补偿算法

清华大学 辅仁网/2017-07-07

卫星高速数传系统相位噪声迭代补偿算法
裴玉奎1, 索婉萍2
1. 清华大学 宇航技术研究中心, 北京 100084;
2. 清华大学 电子工程系, 北京 100084
Iterative compensation algorithm for the phase noise in high-data-rate satellite communications
PEI Yukui1, SUO Wanping2
1. Tsinghua Space Center, Beijing 100084, China;
2. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要针对相位噪声造成的卫星数传系统性能的下降,该文仿真分析了2种不同频段下的相位噪声对于未编码和有低密度奇偶校验(low-density parity-check,LDPC)码的高阶调制系统的影响,并针对较高频段相位噪声造成的编码系统性能的明显下降,提出了一种联合LDPC译码的相位噪声迭代补偿算法。该算法通过对比解调前与译码后符号的相位信息差异,利用相位噪声的窄带低通特性对其进行提取,进而通过构造迭代环路对解调前的符号进行补偿。仿真结果表明:该算法可以有效降低误比特率,对于因相位噪声引起的LDPC编码系统性能的下降有显著的改善作用。
关键词 相位噪声,高速数传,低密度奇偶校验(LDPC)码,迭代补偿
Abstract:Phase noise can impair the BER performance of high-data-rate satellite communications. The influence of the phase noise varies in the two frequency bands in both the uncoded or low-density parity-check (LDPC) coded communication systems. This paper presents a simulation and then an iterative compensation algorithm for the LDPC codes for the phase noise in the higher frequency band, which significantly degrades the high order modulation systems performance. The algorithm first compares the phases of the receiving and after-decoding symbols, extracts the difference based on the low-pass and narrow-band characteristics of the phase noise, and their compensates for the losses in an iteration loop. Simulations show that the method improves the LDPC-coded systems performance when the phase noise significantly degrades the signal.
Key wordsphase noisehigh data rateLDPC codesiterative compensation
收稿日期: 2015-12-25 出版日期: 2017-04-19
ZTFLH:TN927
引用本文:
裴玉奎, 索婉萍. 卫星高速数传系统相位噪声迭代补偿算法[J]. 清华大学学报(自然科学版), 2017, 57(4): 388-392,398.
PEI Yukui, SUO Wanping. Iterative compensation algorithm for the phase noise in high-data-rate satellite communications. Journal of Tsinghua University(Science and Technology), 2017, 57(4): 388-392,398.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.25.009 http://jst.tsinghuajournals.com/CN/Y2017/V57/I4/388


图表:
图1 系统模型框图
表1 相位噪声参数1(Ka频段)
表2 相位噪声参数2(60GHz毫米波频段)
图2 相位噪声对星座图的影响
图3 相位噪声对系统误比特率的影响
图4 迭代补偿算法框图
图5 相位噪声的窄带低通特性
图6 迭代补偿环路对性能的改善


参考文献:
[1] Stark A, Raphaeli D. Combining decision-feedback equalization and carrier recovery for two-dimensional signal constellations[J]. IEEE Trans Commun, 2007, 55(10): 2012-2012.
[2] Zou Q, Tarighat A, Sayed A H. Compensation of phase noise in OFDM wireless systems[J]. IEEE Transactions on Signal Processing, 2007, 55(11): 5407-5424.
[3] 龙毅, 匡麟玲, 陆建华. 高阶调制OFDM的联合似然估计算法[J]. 清华大学学报(自然科学版), 2009, 49(4): 566-569. LONG Yi, KUANG Linling, LU Jianhua. Joint ML estimation algorithm for higher-order OFDM systems[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(4): 566-569. (in Chinese)
[4] Krishnan R, Khanzadi M R, Svensson L, et al. Variational Bayesian framework for receiver design in the presence of phase noise in MIMO systems[C]//2012 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway, NJ: IEEE Press, 2012: 347-352.
[5] Yao Y, Zheng J, Feng Z. Channel capacity estimation in TDMS-based MIMO measurements[J]. Tsinghua Science & Technology, 2011, 16(4): 371-376.
[6] Lottici V, Luise M. Carrier phase recovery for turbo-coded linear modulations[C]//2002 IEEE International Conference on Communication. Piscataway, NJ: IEEE Press, 2002: 1541-1545.
[7] Colavolpe G, Barbieri A, Caire G. Algorithms for iterative decoding in the presence of strong phase noise[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(9): 1748-1757.
[8] Worthen A P, Stark W E. Unified design of iterative receivers using factor graphs [J]. IEEE Transactions on Information Theory, 2001,47(2): 843-849.
[9] Kschischang F R, Frey B J, Loeliger H A. Factor graphs and the sum-product algorithm [J]. IEEE Transactions on Information Theory, 2001,47(2): 498-519.
[10] Colavolpe G, Barbieri A, Caire G, et al. Bayesian and non-Bayesian methods for iterative joint decoding and detection in the presence of phase noise [C]//Proceedings of the 2004 IEEE International Symposium on Information Theory. Piscataway, NJ: IEEE Press, 2004: 131.
[11] Colavolpe G, Barbieri A, Caire G. A Bayesian method for iterative joint detection and decoding in the presence of phase noise [C]//12th European Signal Processing Conference. Piscataway, NJ: IEEE Press, 2004: 845-848.
[12] Koike-Akino T, Millar D S, Kojima K, et al. Phase noise-robust LLR calculation with linear/bilinear transform for LDPC-coded coherent communications [C]//2015 Conference on Lasers and Electro-Optics (CLEO). Piscataways, NJ: IEEE Press, 2015: 3.
[13] 高宇洁. OFDM系统中相位噪声的影响与补偿[D]. 西安: 西安电子科技大学, 2007. GAO Yujie. Effects and Compensation of Phase Noise in OFDM Systems [D]. Xi'an: Xidian University, 2007. (in Chinese)
[14] Cheema H M, Arsalan M, Salama K N, et al. A low-power 802.11 ad compatible 60 GHz phase-locked loop in 65nm CMOS [J]. Microwave and Optical Technology Letters, 2015,57(3): 660-667.
[15] 艾赳赳. 基于SC-FDE的60 GHz系统信道估计与相位噪声抑制[D]. 成都: 电子科技大学, 2013. AI Jiujiu. Channel Estimation and Phase Noise Suppression for SC-FDE based 60 GHz Communication Systems [D]. Chengdu: University of Electronic Science and Technology of China, 2013. (in Chinese)
[16] Tse D, Viswanath P. Fundamentals of Wireless Communication [M]. Cambridge: Cambridge University Press, 2005.


相关文章:
[1]李航, 高镇, 赵明, 王京. 适于OBP卫星的Turbo码自适应部分迭代译码[J]. 清华大学学报(自然科学版), 2016, 56(9): 925-929.

相关话题/系统 清华大学 北京 电子科技大学 相位