删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

频谱共享系统中基于大尺度信道状态信息的资源优化

清华大学 辅仁网/2017-07-07

频谱共享系统中基于大尺度信道状态信息的资源优化
赵俊韬, 冯伟, 赵明, 王京
清华大学 电子工程系, 北京 100084
Resource optimization with large-scale channel state information for spectrum sharing systems
ZHAO Juntao, FENG Wei, ZHAO Ming, WANG Jing
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要在基于分布式天线的频谱共享系统(DSSS)中,信道分配和天线选择优化是提升系统性能的重要手段。为了有效控制资源优化的系统开销,研究基于大尺度信道状态信息的联合信道分配和天线选择方法。以次用户的和速率为优化目标建立了优化问题模型,通过变量松弛将整数规划问题转化为线性规划问题求解,降低了复杂度。仿真结果表明:仅仅依靠大尺度信道状态信息仍能够显著提升系统的和速率性能。在实际应用中,系统开销严格受限,该方法为折中系统开销与性能增益提供了有效途径。
关键词 移动通信,基于分布式天线的频谱共享系统,信道分配,天线选择,大尺度信道状态信息
Abstract:In a distributed antenna-based spectrum sharing system (DSSS), both the channel allocation and the antenna selection are important issues for enhancing system performance. The system overhead can be controlled by a joint channel allocation and antenna selection scheme presented here that is based on only the large-scale channel state information. Particularly, the sum rate of the secondary users (SUs) is used as the optimization objective to formulate the optimization problem. The integer programming problem is transformed into a linear programming problem through variable relaxation to reduce the complexity. Simulations show that the system sum rate is significantly improved using only the large-scale channel state information. In practical applications where the system overhead is strictly limited, this scheme offers an effective way to balance the system overhead and performance gain.
Key wordsmobile communicationdistributed antenna-based spectrum sharing systemchannel allocationantenna selectionlarge-scale channel state information
收稿日期: 2015-10-29 出版日期: 2016-07-22
ZTFLH:TN929.5
基金资助:国家自然科学基金资助项目(61201192);国家“八六三”高技术项目(2014AA01A703);国家重点基础研究发展规划项目(2012CB316000);国家科技重大专项课题(2015ZX03001016-002)
通讯作者:王京,教授,E-mail:wangjing@tsinghua.edu.cnE-mail: wangjing@tsinghua.edu.cn
引用本文:
赵俊韬, 冯伟, 赵明, 王京. 频谱共享系统中基于大尺度信道状态信息的资源优化[J]. 清华大学学报(自然科学版), 2016, 56(7): 692-695.
ZHAO Juntao, FENG Wei, ZHAO Ming, WANG Jing. Resource optimization with large-scale channel state information for spectrum sharing systems. Journal of Tsinghua University(Science and Technology), 2016, 56(7): 692-695.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.21.028 http://jst.tsinghuajournals.com/CN/Y2016/V56/I7/692


图表:
图1 基于分布式天线的频谱共享系统示意图
图2 次用户和速率性能对比


参考文献:
[1] Haykin S. Cognitive radio:Brain-empowered wireless communications[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2):201-220.
[2] FENG Wei, WANG Yanmin, GE Ning, et al. Virtual MIMO in multi-cell distributed antenna systems:coordinated transmissions with large-scale CSIT[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(10):2067-2081.
[3] WANG Yanmin, FENG Wei, XIAO Limin, et al. Coordinated multi-cell transmission for distributed antenna systems with partial CSIT[J]. IEEE Commun Lett, 2012, 16(7):1044-1047.
[4] FENG Wei, CHEN Yunfei, GE Ning, et al. Optimal energy-efficient power allocation for distributed antenna systems with imperfect CSI[J]. IEEE Trans Veh Technol, 2015:1-5.
[5] 赵俊韬, 冯伟, 肖立民, 等. 认知次用户系统中分布式天线的位置优化[J]. 清华大学学报(自然科学版), 2014, 54(12):1594-1597.ZHAO Juntao, FENG Wei, XIAO Limin, et al. Optimization of distributed antenna locations for cognitive secondary systems[J]. J Tsinghua Univ (Sci and Tech), 2014, 54(12):1594-1597. (in Chinese)
[6] FENG Wei, LI Yunzhou, GAN Jiansong, et al. On the deployment of antenna elements in generalized multi-user distributed antenna systems[J]. Mobile Netw Appl, 2011, 16(1):35-45.
[7] ZHAO Juntao, FENG Wei, ZHOU Chunhui, et al. Antenna Location Design for Distributed-Antenna Based Secondary Systems[C]//Proceedings of IEEE International Conference on Wireless Communications, Networking and Mobile Computing. Shanghai, China:IEEE Press, 2012:1-4.
[8] ZHANG Heli, JI Hong, LI Xi. RAU allocation for secondary users in cognitive WLAN over Fiber system:a HMM approach[C]//Proceedings of IEEE Wireless Communications and Networking Conference. Shanghai, China:IEEE Press, 2012:1416-1421.
[9] SHAN Baokun, LI Xi, JI Hong, et al. Adaptive energy-efficient resource allocation for cognitive wireless local area network over fiber[C]//Proceedings of IET National Doctoral Academic Forum on Information and Communications Technology. Beijing, China:IET, 2013:1-5.
[10] FENG Wei, GE Ning, LU Jianhua. Hierarchical transmission optimization for massively dense distributed antenna systems[J]. IEEE Communications Letters, 2015, 19(4):673-676.
[11] FENG Wei, LI Yunzhou, ZHOU Shidong, et al. Downlink capacity of distributed antenna systems in a multi-cell environment[C]//Proceedings of Wireless Communications and Networking Conference. Budapest, Hungary:IEEE Press, 2009:1-5.
[12] Zavala-Diaz J C, Ruiz-Vanoye J A, Diaz-Parra O, et al. A solution to the strongly correlated 0-1 knapsack problem by a binary branch and bound algorithm[C]//Proceedings of Fifth International Joint Conference on Computational Sciences & Optimization. Harbin, China:IEEE Press, 2012:237-241.
[13] Martello S, Toth P. An upper bound for the zero-one knapsack problem and a branch and bound algorithm[J]. European Journal of Operational Research, 1977, 1(3):169-175.


相关文章:
[1]王璟, 王燕敏, 冯伟, 肖立民, 周世东. 分布式天线系统中基于大尺度信道信息的功耗优化[J]. 清华大学学报(自然科学版), 2016, 56(7): 696-699,706.
[2]李涛, 张焱, 许希斌, 周世东. 移动通信系统平均物理层安全容量[J]. 清华大学学报(自然科学版), 2015, 55(11): 1241-1245,1252.

相关话题/系统 优化 信息 资源 清华大学