近海及海上风资源时空特性研究 |
封宇1, 何焱2, 朱启昊1, 郭辰2, 冯笑丹2, 黄必清1 |
1. 清华大学 自动化系, 北京 100084; 2. 华能新能源股份有限公司, 北京 100036 |
Temporal and spatial characteristics of offshore wind resources |
FENG Yu1, HE Yan2, ZHU Qihao1, GUO Chen2, FENG Xiaodan2, HUANG Biqing1 |
1. Department of Automation, Tsinghua University, Beijing 100084, China; 2. Huaneng Renewables Corporation Limited, Beijing 100036, China |
摘要:
| |||
摘要海洋蕴含的风能资源比陆地更加丰富。由于海上与陆地气象要素的差异, 在进行近海及海上风资源评估时, 通常需要考虑海上风资源时间特性和空间特性的影响。该文根据某公司海上测风塔和近海测风塔的实际测风资料, 研究了海上风资源在时间上的不同分布, 重点使用了EM(expectation-maximization)算法, 研究传统风资源评估方法几乎不考虑的风速在昼夜表现出的不同分布。同时, 基于实测数据, 应用机器学习算法, 结合Monin-Obukhov相似性理论、参数离散替代方案以及海面空气动力学粗糙度参数化方案, 对海上风资源的空间特性进行了分析研究, 有效地反映出海洋表面动力学粗糙度变化对于风速垂直变化的影响, 弥补了传统切变公式的不足。结果揭示了海上风资源的时空变化规律, 为近海及海上风资源评估和海上风电场的前期规划提供了依据。 | |||
关键词 :风能,海上风资源,时空特性,风资源评估,Monin-Obukhov相似性理论,空气动力学粗糙度 | |||
Abstract:Offshore wind energy resources are more abundant than on land. However, sea and land winds have different meteorological elements so offshore wind resource assessments need to take the impact of the temporal and spatial characteristics of the offshore wind resources into consideration. Data from an offshore wind measurement mast was used to study offshore wind distributions at different time scales. The EM (expectation-maximization) algorithm was used to study the differences in offshore wind distributions between day and night, which is normally not considered in traditional wind assessment methods. The spatial characteristics of offshore winds will than analyzing using a machine learning algorithm, Monin-Obukhov similarity theory, and a parameter replacement scheme in discrete calculations and in an ocean surface aerodynamic roughness model. This method efficiently reflects the impact of ocean surface aerodynamic roughness changes on the vertical variations of the wind speed that is not considered in traditional wind shear formula. The results show the temporal and spatial characteristics of the offshore wind resources as a basis for better offshore wind assessments for planning offshore wind farms. | |||
Key words:wind energyoffshore wind resourcetemporal and spatial characteristicswind resource assessmentMonin-Obukhov similarity theorysurface aerodynamic roughness | |||
收稿日期: 2016-01-07 出版日期: 2016-05-19 | |||
| |||
通讯作者:黄必清(1966-), 教授, E-mail: hbq@tsinghua.edu.cnE-mail: hbq@tsinghua.edu.cn |
引用本文: |
封宇, 何焱, 朱启昊, 郭辰, 冯笑丹, 黄必清. 近海及海上风资源时空特性研究[J]. 清华大学学报(自然科学版), 2016, 65(5): 522-529. FENG Yu, HE Yan, ZHU Qihao, GUO Chen, FENG Xiaodan, HUANG Biqing. Temporal and spatial characteristics of offshore wind resources. Journal of Tsinghua University(Science and Technology), 2016, 65(5): 522-529. |
链接本文: |
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.25.011或 http://jst.tsinghuajournals.com/CN/Y2016/V65/I5/522 |
图表:
图1 海上风资源评估方法 |
表1 测风数据的完整率计算 |
图2 风速的单日变化曲线 |
图3 风速的月变化曲线 |
图4 风速的昼夜变化曲线 |
表2 海上风资源昼夜分布参数 |
图5 Charnock模型对于风速垂直变化的拟合结果 |
图6 Smith模型对于风速垂直变化的拟合结果 |
表3 不同风廓线拟合方法的均方根误差 |
参考文献:
[1] 赵燕华, 蒋翠花, 吴杰. 宿迁70m高度测风塔风速和风能的变化特征分析[C]//S8大气探测与仪器新技术、新方法. 北京:中国气象学会, 2012:349-353. ZHAO Yanhua, JIANG Cuihua, WU Jie. Analysis of characteristics of wind resource based on 70-meter wind measurement mast in Suqian[C]//S8 New Technology and Method of Atmospheric Detection and Instrument. Beijing:Chinese Meteorological Society, 2012:349-353. (in Chinese) [2] 符平, 秦鹏飞, 张金接. 海上风资源时空特性研究[J]. 中国水利水电科学研究院学报, 2014,12(2):155-161. FU Ping, QIN Pengfei, ZHANG Jinjie. Research of spatio-temporal characteristics of offshore wind resources[J].Journal of China Institute of Water Resources and Hydropower Research, 2014,12(2):155-161. (in Chinese) [3] 李常春. 风资源评估方法研究[D]. 呼和浩特:内蒙古工业大学, 2006. LI Changchun. Study on the Method of Wind Resource Assessment[D]. Huhhot:Inner Mongolia University of Technology, 2006. (in Chinese) [4] 杜燕军, 冯长青. 风切变指数在风电场风资源评估中的应用[J]. 电网与清洁能源, 2010(5):62-66. DU Yanjun, FENG Changqing. Application of wind shear index in the assessment of wind resources of wind farm[J].Power System and Clean Energy, 2010(5):62-66. (in Chinese) [5] 王有禄, 李淑华, 宋飞. 风电场测风数据的验证和处理方法[J]. 电力勘测设计, 2009,16(1):60-66. WANG Youlu, LI Shuhua, SONG Fei. Treatment method and inspection of anemometric dates in wind power plant[J].Electric Power Survey and Design, 2009,16(1):60-66. (in Chinese) [6] Businger J A, Wyngaard J C, Izumi Y, et al. Flux-profile relationships in the atmospheric surface layer[J].Journal of the Atmospheric Sciences, 1971,28(2):181-189. [7] Gryning S E, Batchvarova E, Brümmer B, et al. On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer[J].Boundary-Layer Meteorology, 2007,124(2):251-268. [8] Venkatram A. Estimating the Monin-Obukhov length in the stable boundary layer for dispersion calculations[J].Boundary-Layer Meteorology, 1980,19(4):481-485. [9] Lange B, Larsen S, Højstrup J, et al. Importance of thermal effects and sea surface roughness for offshore wind resource assessment[J].Journal of Wind Engineering & Industrial Aerodynamics, 2004,92(11):959-988. [10] H gstr m U L F. Non-dimensional wind and temperature profiles in the atmospheric surface layer:A re-evaluation[J]. Boundary-Layer Meteorology, 1988,42(1-2):55-78. [11] Charnock H. Wind stress on a water surface[J].Quarterly Journal of the Royal Meteorological Society, 1955,81(350):639-640. [12] Smith S D. Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature[J].Journal of Geophysical Research:Oceans, 1988,93(C12):15467-15472. |
相关文章:
|