|
摘要随着对无线传感器网络的广泛研究与应用,用户对传感器节点的安全性要求日益提高。由于传统基于密码学的信息安全技术并不能够完美地解决传感器节点面临的复杂安全威胁,信誉系统已经被引入到无线传感器网络中,对节点安全情况进行周期性评估,并分配相应的信誉值。由于信誉系统很难分辨一些节点的某些行为是否处于正常区间如监测数据是否准确,进而导致某些传感器节点能够躲避信誉系统的监测,对用户决策产生不良影响。本文提出了一种结合信誉系统和噪声点检测技术的无线传感器网络节点安全模型。一方面,网络中的信誉系统模块为噪声点检测模块提供数据支撑,以便高效检测到噪声点数据;另一方面,噪声点检测模块对信誉系统进行反馈,加速节点信誉值的收敛,提高系统效率。一系列的仿真表明,相比于传统信誉系统模型,改进后的节点安全模型能够同时检测到网络攻击和数据攻击,同时该模型具有更高的收敛速度。 |
关键词 :无线传感器网络,节点安全模型,信誉系统,数据噪声点检测 |
Abstract:The increased number of wireless sensor networks requires security for the sensor nodes. Since traditional information security systems based on cryptography cannot serve the complex safety issues threatening sensor nodes, the reputation system has been introduced into wireless sensor networks to periodically evaluate security nodes and assign reputation values. However, the reputation system cannot always distinguish some abnormal behavior in the sensor nodes, such as the monitoring data accuracy. As a result, some nodes can avoid monitoring by the reputation system which will affect user decisions. This paper presents a wireless sensor network node security model combining the reputation system with data noise detection. The reputation system provides the node reputations to the data noise detection model to more effectively detect data noise. The data noise detection model then feeds information back to the reputation system which accelerates the convergence rate of the reputation system. Simulations show that this node security model can simultaneously detect network and data attacks better than the traditional credit system model with a higher convergence rate. |
Key words:wireless sensor networknode security modelreputation systemdata noise points detection |
收稿日期: 2016-01-18 出版日期: 2017-01-20 |
|
通讯作者:刘云,教授,E-mail:liuyun@bjtu.edu.cnE-mail: liuyun@bjtu.edu.cn |
[1] | Yu L, Wang N, Meng X. Real-time forest fire detection with wireless sensor networks[C]//International Conference on Wireless Communications, Networking and Mobile Computing, 2005. Shanghai:IEEE, 2005, 2:1214-1217. |
[2] | Mainwaring A, Culler D, Polastre J, et al. Wireless sensor networks for habitat monitoring[C]//Proceedings of the 1st ACM international Workshop on wireless sensor networks and applications. Atlanta, USA:ACM, 2002:88-97. |
[3] | Trossen D, Pavel D. Sensor networks, wearable computing, and healthcare applications[J]. Pervasive Computing, IEEE, 2007, 6(2):58-61. |
[4] | Herring C, Kaplan S. Component-based software systems for smart environments[J]. Personal Communications IEEE, 2000, 7(5):60-61. |
[5] | Perrig A, Szewczyk R, Tygar J D, et al. SPINS:Security protocols for sensor networks[J]. Wireless Networks, 2002, 8(5):521-534. |
[6] | Watro R, Kong D, Cuti S, et al. TinyPK:securing sensor networks with public key technology[C]//Proceedings of the 2nd ACM Workshop on Security of ad hoc and Sensor Networks. Washington, USA:ACM, 2004:59-64. |
[7] | Chen H, Han P, Yu B, et al. A new kind of session keys based on message scheme for sensor networks[C]//Asia-Pacific Conference Proceedings. Nanjing, China:IEEE, 2005:155-161. |
[8] | Ganeriwal S, Balzano L K, Srivastava M B. Reputation-based framework for high integrity sensor networks[J]. ACM Transactions on Sensor Networks (TOSN), 2008, 4(3):1-12. |
[9] | Ozdemir S. Functional reputation based data aggregation for wireless sensor networks[C]//IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, 2008. Avignon, France:IEEE, 2008:592-597. |
[10] | Roy S, Conti M, Setia S, et al. Secure data aggregation in wireless sensor networks[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(3):1040-1052. |
[11] | Heinzelman W B, Chandrakasan A P, Balakrishnan H. An application-specific protocol architecture for wireless microsensor networks[J]. IEEE Transactions on Wireless Communications, 2002, 1(4):660-670. |
[12] | Younis O, Fahmy S. HEED:A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks[J]. IEEE Transactions on Mobile Computing, 2004, 3(4):366-379. |
[13] | Commerce B E, Jøsang A, Ismail R. The beta reputation system[C]//In Proceedings of the 15th Bled Electronic Commerce Conference. Bled, Slovenia:e-Reality, 2002:1-14. |
[14] | Ester, Martin, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Knowledge Discovery and Data Mining. Portland, USA:ACM, 1996:1-6. |
[15] | Crosby G V, Pissinou N. Cluster-based reputation and trust for wireless sensor networks[C]//Consumer Communications and Networking Conference. Las Vegas, NV, USA:IEEE, 2007:604-608. |