删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于时空特征的中继卫星系统业务模型

清华大学 辅仁网/2017-07-07

基于时空特征的中继卫星系统业务模型
王磊1,3, 匡麟玲2, 黄惠明3
1. 清华大学 航天航空学院, 北京 100084;
2. 清华大学 宇航技术研究中心, 北京 100084;
3. 北京空间信息中继传输技术研究中心, 北京 100094
TDRSS traffic model based on time and spatial characteristics
WANG Lei1,3, KUANG Linling2, HUANG Huiming3
1. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China;
2. Tsinghua Space Center, Tsinghua University, Beijing 100084, China;
3. Beijing Space Information Relay and Transmission Technology Center, Beijing 100094, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要对中继卫星系统业务特征的分析和建模是系统资源调度优化问题的关键。基于系统调度原理和实际运控特点,构建了一个能够统一表征用户中继业务的参数化模型,可从时间、空间2个维度描述中继业务特征。通过引入中继卫星天线指向角度作为空间维度变量,改进传统的业务时序约束关系,解决了现有业务模型对时间和空间特征描述不准确的问题。对中继卫星系统业务数据进行分析和调度数值仿真,检验了模型的有效性。仿真结果表明:采用新的业务模型后,中继业务调度完成率平均增加10.65%,单址天线无效资源占比平均减少12.85%,有效提升了中继卫星系统效益。
关键词 中继卫星系统,业务模型,时空特征,调度
Abstract:Analysis and modeling of the traffic characteristics in tracking and data relay satellite systems (TDRSS) are the key to improving the system scheduling performance. A parametric model was developed to unify the system multi-type traffic representation based on a scheduling principle and actual TDRSS operating data. The system can describe the traffic time and spatial characteristics. The antenna pointing angle is used as the mission's space related variable to improve the time sequence constraint of consecutive missions and the time and spatial accuracies that are rarely considered in conventional traffic models. The model validity is verified through analysis of NASA TDRSS traffic data and numerical simulations. The results show that the average scheduling success rate is 10.65% better than the conventional model, while the average antenna resource consumption is reduced by 12.85%, which effectively improves the TDRSS efficiency.
Key wordstracking and data relay satellite system (TDRSS)traffic modeltime and spatial characteristicsscheduling
收稿日期: 2016-03-30 出版日期: 2017-01-20
ZTFLH:V474.2
通讯作者:匡麟玲,研究员,E-mail:kll@tsinghua.edu.cnE-mail: kll@tsinghua.edu.cn
引用本文:
王磊, 匡麟玲, 黄惠明. 基于时空特征的中继卫星系统业务模型[J]. 清华大学学报(自然科学版), 2017, 57(1): 55-60,66.
WANG Lei, KUANG Linling, HUANG Huiming. TDRSS traffic model based on time and spatial characteristics. Journal of Tsinghua University(Science and Technology), 2017, 57(1): 55-60,66.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.21.011 http://jst.tsinghuajournals.com/CN/Y2017/V57/I1/55


图表:
图1 中继卫星系统调度原理图
表1 用户1和用户2中继业务时长概率分布
表2 TDRSS2014年主要用户信息
表3 TDRSS主要用户中继业务特征
图2 中继卫星系统双星服务场景
图3 调度业务完成率
图4 单址天线无效资源占比


参考文献:
[1] Gramling J J, Chrissotimos N G. Three generations of NASA's tracking and data relay satellite system[C]//2008 AIAA SpaceOps Conference. Heidelberg, Germany:AIAA press, 2008:1-11.
[2] 王家胜, 齐鑫. 为载人航天服务的中国数据中继卫星系统[J]. 中国科学(技术科学版), 2014, 44(3):235-242.WANG Jiasheng, QI Xin. China's data relay satellite system served for manned spaceflight[J]. Sci Sin Tech, 2014, 44(3):235-242. (in Chinese)
[3] 黄惠明. 我国第一代中继卫星地面应用系统发展建设的思考[J]. 飞行器测控学报, 2012, 31(5):1-5.HUANG Huiming. Reflections on development of the ground system of the first generation CTDRSS[J]. Journal of Spacecraft TT&C Technology, 2012, 31(5):1-5. (in Chinese)
[4] Goddard Space Flight Center/Exploration and Space Communications Projects Division. Space Network Handbook[M]. Greenbelt, Maryland:Goddard Space Flight Center, 2007.
[5] Rojanasoonthon S, Bard J, Reddy S. Algorithms for parallel machine scheduling:A case study of the tracking and data relay satellite system[J]. Journal of the Operational Research Society, 2003, 54:806-821.
[6] Rojanasoonthon S, Bard J. A grasp for parallel machine scheduling with time windows[J]. INFORMS Journal on Computing, 2005, 17(1):32-51.
[7] FANG Yanshen, CHEN Yingwu. Constraint programming model of TDRSS single access link scheduling problem[C]//Proceedings of the Fifth International Conference on Machine Learning and Cybernetics. Dalian, China:IEEE Press, 2006:948-951.
[8] LIN Peng, KUANG Linling, CHEN Xiang, et al. Adaptive subsequence adjustment with evolutionary asymmetric path relinking for TDRSS scheduling[J]. Journal of Systems Engineering and Electronics, 2014, 25(5):800-810.
[9] 林鹏, 晏坚, 费立刚, 等. 中继卫星系统的多星多天线动态调度方法[J]. 清华大学学报(自然科学版), 2015, 55(5):491-496.LIN Peng, YAN Jian, FEI Ligang, et al. Multi-satellite and multi-antenna TDRSS dynamic scheduling method[J]. J Tsinghua Univ(Sci and Tech), 2015, 55(5):491-496(in Chinese)
[10] ZHAO Weihu, ZHAO Jing, LI Yongjun, et al. Resources scheduling for data relay satellite with microwave andoptical hybrid links based on improved niche genetic algorithm[J]. International Journal for Light and Electron Optics, 2014, 125(13):3370-3375
[11] Inigo DEL Portillo. Contributions to ITACA:A Tool to Architect Space Communication Networks[D]. Cambridge, MA, USA:Massachusetts Institute of Technology, 2014.
[12] Laporte G. The vehicle routing problem:An overview of exact and approximate algorithms[J]. European Journal of Operational Research, 1992, 59(3):345-358.
[13] Toth P, Vigo D. Vehicle Routing Problems, Methods and Applications[M]. 2nd ED. Philadelphia, PE, USA:Society for Industrial and Applied Mathematics, 2014.


相关文章:
[1]康凯, 陈涛, 袁宏永. 多层级应急救援协同调度模型[J]. 清华大学学报(自然科学版), 2016, 56(8): 830-835,843.
[2]施磊, 江永亨, 王凌, 黄德先. 一种求解炼油厂连续时间调度模型的Lagrange分解算法[J]. 清华大学学报(自然科学版), 2016, 56(4): 437-447.
[3]田文洪, 李国忠, 陈瑜, 黄超杰, 杨吴同. 一种兼顾负载均衡的Hadoop集群动态节能方法[J]. 清华大学学报(自然科学版), 2016, 56(11): 1226-1231.
[4]王晶, 王书宁. 单电梯紧急疏散调度问题求解[J]. 清华大学学报(自然科学版), 2015, 55(5): 550-557.
[5]林鹏, 晏坚, 费立刚, 寇保华, 刘华峰, 陆建华. 中继卫星系统的多星多天线动态调度方法[J]. 清华大学学报(自然科学版), 2015, 55(5): 491-496,502.
[6]沈婧楠, 王凌, 王圣尧. 求解分布式置换流水线调度问题的化学反应优化算法[J]. 清华大学学报(自然科学版), 2015, 55(11): 1184-1189,1196.
[7]张磊,张知皦,陈渝. 面向多核虚拟机的高效瞬态协同调度算法[J]. 清华大学学报(自然科学版), 2014, 54(4): 495-501.

相关话题/系统 空间 北京 技术 清华大学