删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

球床堆燃料元件串列提升碰撞过程动力学特征

清华大学 辅仁网/2017-07-07

球床堆燃料元件串列提升碰撞过程动力学特征
刘洪冰, 黄岸, 常保华, 王力, 都东
清华大学 机械工程系, 先进成形制造教育部重点实验室, 北京 100084
Dynamics characteristics of collisions between fuel elements transported in tandem in a pebble-bed reactor system
LIU Hongbing, HUANG An, CHANG Baohua, WANG Li, DU Dong
Key Laboratory for Advanced Materials Processing Technology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要球床堆采用气力输送方式实现球形燃料元件在堆芯外数十米垂直管路中的提升。通过向管路中先后加入2个燃料元件,可以实现串列提升模式,进而提高燃料元件的输送效率。在提升过程中,燃料元件之间会发生碰撞。研究燃料元件碰撞过程的动力学特征,可以为分析串列提升模式的可行性和可靠性提供重要基础。该文基于计算流体力学研究了提升管路内的流场特征,对燃料元件进行了受力分析,在此基础上建立了燃料元件提升过程的动力学模型,研究了燃料元件的动力学特征。研究结果表明:燃料元件之间的碰撞力不会导致其发生破损;经历几次碰撞后,2个燃料元件会被一起提升,提升过程稳定,提升效率较高。在有机玻璃实验平台上开展实验,实验结果验证了串列提升模式的可行性。研究结果为燃料元件气力输送提供了基础,也为球床堆设计提供了依据。
关键词 反应堆流体力学,球床堆,动力学,气力输送,燃料元件
Abstract:Spherical fuel elements are lifted pneumatically into an array of tubes outside the core in a pebble-bed reactor with the flow in the tubes perpendicular to the flow in the core. Sometimes two fuel elements are very close in the pipeline so they are transported in tandem, which increases the fuel element transportation efficiency. When lifted, the fuel elements may collide with each other with the characteristics of these collisions providing an important basis for evaluating the reliability of the transport system. This study analyzed the flow characteristics in the pipeline using computational fluid dynamics to determine the forces on the fuel elements. A dynamic model of the fuel elements was then developed to describe the impact characteristics. The results demonstrate that the collision force will not damage the fuel elements and that the fuel elements will be lifted together after several collisions. The lifting process is steady and the lifting is efficient. Experimental tests validate the accuracy of the theoretical analysis. This research provides a basis for designing pneumatic transport systems for fuel elements in pebble-bed reactors.
Key wordsreactor fluid mechanicspebble-bed reactordynamicspneumatic transportationfuel element
收稿日期: 2016-04-30 出版日期: 2016-09-22
ZTFLH:TL334
通讯作者:都东,教授,E-mail:dudong@tsinghua.edu.cnE-mail: dudong@tsinghua.edu.cn
引用本文:
刘洪冰, 黄岸, 常保华, 王力, 都东. 球床堆燃料元件串列提升碰撞过程动力学特征[J]. 清华大学学报(自然科学版), 2016, 56(9): 1003-1008,1015.
LIU Hongbing, HUANG An, CHANG Baohua, WANG Li, DU Dong. Dynamics characteristics of collisions between fuel elements transported in tandem in a pebble-bed reactor system. Journal of Tsinghua University(Science and Technology), 2016, 56(9): 1003-1008,1015.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.21.058 http://jst.tsinghuajournals.com/CN/Y2016/V56/I9/1003


图表:
图1 燃料元件受力及运动示意图
图2 网格划分(仅展示壳网格)
表1 仿真参数
图3 Δs=2mm、Δv=2m/s时的速度矢量场
图4 Δs=100mm、Δv=6m/s时的速度矢量场
表2 部分Fu计算结果
表3 部分Fd计算结果
图5 vu随时间t的变化
图6 vd随时间t的变化
图7 燃料元件位移随时间t的变化
图8 有机玻璃实验平台结构示意图
图9 高速摄像机拍摄到的部分图像


参考文献:
[1] Zhang Z, Wu Z, Wang D, et al. Current status and technical description of Chinese 2×250 MWth HTR-PM demonstration plant [J]. Nuclear Engineering and Design, 2009, 239(7): 1212-1219.
[2] Liu J, Xiao H, Li C. Design and full scale test of the fuel handling system [J]. Nuclear Engineering and Design, 2002, 218(1-3): 169-178.
[3] 经荥清, 杨永伟, 古玉祥, 等. HTR-10初次临界装料预估 [J]. 清华大学学报(自然科学版), 2001, 41(4/5): 116-119.JING Xingqing, YANG Yongwei, GU Yuxiang, et al. Prediction calculation of HTR-10 fuel loading for the first criticality [J]. J Tsinghua Univ (Sci & Tech), 2001, 41(4/5): 116-119. (in Chinese)
[4] 沈鹏, 刘洪冰, 都东, 等. 球床反应堆燃料元件成组串列管路气力提升方法研究 [J]. 高技术通讯, 2013, 23(5): 519-524. SHEN Peng, LIU Hongbing, DU Dong, et al. Research on a method for grouped tandem pneumatic lifting a pebble-bed reactor's fuel element transportation in pipelines [J]. High Technology Letters, 2013, 23(5): 519-524. (in Chinese)
[5] 刘继国, 肖宏伶, 王伟成. 10 MW高温气冷实验堆燃料元件装卸系统研制 [J]. 原子能科学技术, 2003, 37(4): 334-339.LIU Jiguo, XIAO Hongling, WANG Weicheng. Development of the fuel handling system in 10 MW high temperature gas-cooled reactor [J]. Atomic Energy Science and Technology, 2003, 37(4): 334-339. (in Chinese)
[6] 胡坤, 李振北. ANSYS ICEM CFD工程实例详解 [M]. 北京: 人民邮电出版社, 2014.HU Kun, LI Zhenbei. Detailed Introduction of Engineering Case of ANSYS ICEM CFD [M]. Beijing: Post & Telecom Press, 2014. (in Chinese)
[7] 王丰. 液体和气体的热物理性质表 [M]. 北京: 科学出版社, 1982.WANG Feng. Thermophysical Properties of Liquids and Gases [M]. Beijing: Science Press, 1982. (in Chinese)
[8] Tang C, Tang Y, Zhu J, et al. Research and development of fuel element for Chinese 10 MW high temperature gas-cooled reactor [J]. Journal of Nuclear Science and Technology, 2000, 37(9): 802-806.
[9] 陈志鹏, 雒晓卫, 于溯源. 输送速度对高温气冷堆燃料装卸系统提升段石墨球磨损性能的影响 [J]. 原子能科学技术, 2012, 46(Suppl): 853-858.CHEN Zhipeng, LUO Xiaowei, YU Suyuan. Effect of feeding velocity on wear behavior of graphite ball under elevating process with HTGR fuel handling system [J]. Atomic Energy Science and Technology, 2012, 46(Suppl): 853-858. (in Chinese)
[10] 阎超. 计算流体力学方法及应用 [M]. 北京: 北京航空航天大学出版社, 2006.YAN Chao. Method and Application of Computational Fluid Dynamics [M]. Beijing: Beihang University Press, 2006. (in Chinese)
[11] Liu H, Du D, Han Z, et al. Dynamic analysis and application of fuel elements pneumatic transportation in a pebble bed reactor [J]. Energy, 2015, 79: 33-39.
[12] Ikushima T, Honma T, Ishizuka H. Seismic research on block-Type HTGR core [J]. Nuclear Engineering and Design, 1982, 71(2): 195-215.
[13] 卢振明, 张杰, 周湘文, 等. HTGR燃料元件炭化工艺优化 [J]. 核动力工程, 2013, 34(5): 71-75.LU Zhenming, ZHANG Jie, ZHOU Xiangwen, et al. Optimization of carbonization process in manufacture of fuel elements for HTGR [J]. Nuclear Power Engineering, 2013, 34(5): 71-75. (in Chinese)
[14] 唐春和. HTR-10燃料元件的制造和发展趋势 [J]. 核标准计量与质量, 2006(3): 2-12.TANG Chunhe. Manufacture and development trend of fuel element in HTR-10 [J]. He Biaozhun Jiliang Yu Zhiliang, 2006(03): 2-12. (in Chinese)


相关文章:
[1]赵富龙, 薄涵亮, 刘潜峰. 压力变化条件下静止液滴相变模型[J]. 清华大学学报(自然科学版), 2016, 56(7): 759-764,771.
[2]封宇, 何焱, 朱启昊, 郭辰, 冯笑丹, 黄必清. 近海及海上风资源时空特性研究[J]. 清华大学学报(自然科学版), 2016, 65(5): 522-529.
[3]刘家宏, 周晋军, 王浩, 吕宏兴. 山地灌溉管道水力特性的数值模拟[J]. 清华大学学报(自然科学版), 2016, 56(4): 387-393.
[4]杨少霞, 章晶晶, 杨宏伟, 张莉, 高攀. 离子交换树脂吸附氨氮的性能[J]. 清华大学学报(自然科学版), 2015, 55(6): 660-665.
[5]郑东, 钟北京. 四组分汽油替代燃料的化学动力学模型[J]. 清华大学学报(自然科学版), 2015, 55(10): 1135-1142.
[6]赵金龙, 唐卿, 黄弘, 苏伯尼, 李云涛, 付明. 基于数值模拟的大型外浮顶储罐区定量风险评估[J]. 清华大学学报(自然科学版), 2015, 55(10): 1143-1149.
[7]褚文博,罗禹贡,罗剑,李克强. 电驱动车辆的整车质量与路面坡度估计[J]. 清华大学学报(自然科学版), 2014, 54(6): 724-728.
[8]张辉,于长亮,王仁彻,叶佩青,梁文勇. 机床支撑地脚结合部参数辨识方法[J]. 清华大学学报(自然科学版), 2014, 54(6): 815-821.
[9]刘荣华, 魏加华, 翁燕章, 王光谦, 唐爽. HydroMP:基于云计算的水动力学建模及计算服务平台[J]. 清华大学学报(自然科学版), 2014, 54(5): 575-583.
[10]袁静,王俊松,李强,陈曦. 基于递归特性的网络应用流量行为分析[J]. 清华大学学报(自然科学版), 2014, 54(4): 515-521.
[11]朱涵钰, 吴联仁, 吕廷杰. 社交网络用户隐私量化研究: 建模与实证分析[J]. 清华大学学报(自然科学版), 2014, 54(3): 402-406.
[12]冯蘅, 李清海, 甘超, 蒙爱红, 张衍国. 循环流化床返料装置1维动力学模型[J]. 清华大学学报(自然科学版), 2014, 54(2): 229-234.
[13]AbdoulayeCoulibaly, 林曦鹏, 毕景良, 柯道友. 过冷池沸腾中气泡聚并对壁面换热影响的实验研究[J]. 清华大学学报(自然科学版), 2014, 54(2): 240-246.
[14]张丰豪, 何榕. 刚体有限元方法改进及其在风力机动力学中的应用[J]. 清华大学学报(自然科学版), 2014, 54(2): 253-258.

相关话题/计算 实验 过程 北京 流体力学