扁长杆的冲击弹塑性屈曲特性分析的仿真有限元模型 |
刘赛, 吕振华 |
清华大学 汽车工程系, 北京 100084 |
Finite element model refinement for elastic-plastic dynamic buckling of a belt bar during impact |
LIU Sai, LÜ Zhenhua |
Department of Automotive Engineering, Tsinghua University, Beijing 100084, China |
摘要:
| |||
摘要已有文献进行了微弓形扁长金属杆在轴向重物冲击下的动态屈曲实验研究,得到了扁长杆冲击屈曲响应的典型结果,但已有文献及后来相关论文的模拟计算精度较低。为了提高典型扁长杆的冲击屈曲特性的计算分析精度,该文研究了扁长杆的冲击屈曲特性分析的有限元建模方法,改进了有限元模型边界条件的建模仿真度(考虑了转动铰配合间隙、摩擦等),并探讨了有限单元型式及尺度的选择,以壳单元或实体单元模型代替梁单元模型。研究表明:采用改进边界条件(考虑转动铰配合间隙、摩擦等)和薄壳单元或厚壳单元或实体单元的仿真模型比采用理想边界条件和梁单元的原模型的计算结果精度显著提高;基于改进模型的计算分析结果,揭示了该扁长杆受冲击载荷作用时的3维动态反向屈曲行为。 | |||
关键词 :动态屈曲,扁长杆,轴向冲击,有限元分析,模型修正,3维反向屈曲 | |||
Abstract:The dynamic buckling experiment of a belt bar subjected to axial impact was previously studied experimentally. The tests show that previous simulation methods are not very accurate. The finite element analysis accuracy is improved by improving the fidelity of the boundary conditions and properly selecting the finite element type and size. The boundary conditions for the joint clearance and friction are determined by comparing the numerical results with the test data, and shell elements and solid elements are found to give better results than beam elements. Simulations with thin or thick shell elements or solid elements with the new boundary conditions are more accurate than previous results with beam elements and simple boundary conditions. The refined finite element model predicts the 3-D reverse buckling of the belt bar. | |||
Key words:dynamic bucklingbelt baraxial impactfinite element analysismodel refinement3-D reverse buckling | |||
收稿日期: 2016-01-24 出版日期: 2016-10-25 | |||
| |||
通讯作者:吕振华,教授,E-mail:lvzh@tsinghua.edu.cnE-mail: lvzh@tsinghua.edu.cn |
引用本文: |
刘赛, 吕振华. 扁长杆的冲击弹塑性屈曲特性分析的仿真有限元模型[J]. 清华大学学报(自然科学版), 2016, 56(10): 1104-1108. LIU Sai, LÜ Zhenhua. Finite element model refinement for elastic-plastic dynamic buckling of a belt bar during impact. Journal of Tsinghua University(Science and Technology), 2016, 56(10): 1104-1108. |
链接本文: |
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.22.046或 http://jst.tsinghuajournals.com/CN/Y2016/V56/I10/1104 |
图表:
参考文献:
[1] Hayashi T, Sano Y. Dynamic buckling of elastic bars (2nd report, the case of high velocity impact) [J]. Bulletin of the Japan Society of Mechanical Engineers, 1972, 15(88): 1176-1184. [2] Sugiura K, Mizuno E, Fukumoto Y. Dynamic instability analyses of axially impacted columns [J]. Journal of Engineering Mechanics, 1985, 111(7): 893-908. [3] Lepik V. Dynamic buckling of elastic-plastic beams including effects of axial stress waves [J]. International Journal of Impact Engineering, 2001, 25(6): 537-552. [4] CUI Shijie, HAO Hong, Cheong H K. Theoretical study of dynamic elastic buckling of columns subjected to intermediate velocity impact loads [J]. International Journal of Mechanical Sciences, 2002, 44(4): 687-702. [5] 马宏伟, 韩强, 张善元, 等. 受轴向冲击有限长弹性直杆中应力波引起的分叉问题[J]. 爆炸与冲击, 1995, 15(4):300-306.MA Hongwei, HAN Qiang, ZHANG Shanyuan, et al. Bifurcation problem caused by propagation of stress in finite length bar subjected to axial impact [J]. Explosion and Shock Waves, 1995, 15(4): 300-306. (in Chinese) [6] 唐文勇, 陈国胜, 张圣坤. 含脱层复合材料层合杆在轴向应力波作用下的动态屈曲[J]. 振动与冲击, 2007, 26(2):14-17.TANG Wenyong, CHEN Guosheng, ZHANG Shengkun. Dynamic buckling of laminated composite bar with delamination subject to axial stress waves [J]. Journal of Vibration and Shock, 2007, 26(2): 14-17. (in Chinese) [7] 王晓军, 王磊, 马丽红, 等. 不确定初始几何缺陷杆动态屈曲失效分析[J]. 北京航空航天大学学报, 2011, 37(12):1484-1489.WANG Xiaojun, WANG Lei, MA Lihong, et al. Dynamic buckling failure analysis of rod with uncertain initial geometrical imperfection [J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(12): 1484-1489. (in Chinese) [8] Hayashi T, Sano Y. Dynamic buckling of elastic bars (1st report, the case of low velocity impact) [J]. Bulletin of the Japan Society of Mechanical Engineers, 1972, 15(88): 1167-1175. [9] Briseghella L, Majorana C E, Pellegrino C. Dynamic stability of elastic structures: A finite element approach [J]. Computers and Structures, 1998, 69(1): 11-25. [10] ZHANG Zheng, Taheri F. Dynamic pulsebuckling and postbuckling of composite laminated beam using higher order shear deformation theory [J]. Composites Part B: Engineering, 2003, 34(4): 391-398. [11] 揭敏. 一定初缺陷杆在轴向冲击下弹塑性动态屈曲有限元计算[J]. 爆炸与冲击, 1991, 11(2):153-160.JIE Min. Finite element calculation on elastic-plastic dynamic buckling of a bar with finite initial imperfection under axial impact [J]. Explosion and Shock Waves, 1991, 11(2): 153-160. (in Chinese) [12] 郑波, 王安稳. 直杆碰撞刚性壁弹塑性动力后屈曲有限元分析[J]. 爆炸与冲击, 2007, 27(2): 126-130.ZHENG Bo, WANG Anwen. Finite element analysis for elastic-plastic dynamic postbuckling of bars subjected to axial impact [J]. Explosion and Shock Waves, 2007, 27(2): 126-130. (in Chinese) [13] Hughes T J R, Liu W K. Nonlinear finite element analysis of shells: Part I three-dimensional shells [J]. Computer Methods in Applied Mechanics and Engineering, 1981, 26(3): 331-362. [14] Hughes T J R, Liu W K. Nonlinear finite element analysis of shells: Part II two-dimensional shells [J]. Computer Methods in Applied Mechanics and Engineering, 1981, 27(2): 167-181. [15] Belytschko T, Schwer L, Klein M J. Large displacement transient analysis of space frames [J]. International Journal for Numerical and Analytical Methods in Engineering, 1977, 11(1): 65-84. [16] Belytschko T, Lin J I, Tsay C S. Explicit algorithms for nonlinear dynamics of shells [J]. Computer Methods in Applied Mechanics and Engineering, 1984, 42(2): 225-251. [17] Yunus S M, Pawlak T P, Cook R D. Solid elements with rotational degrees of freedom: Part I hexahedron elements [J]. International Journal for Numerical Methods in Engineering, 1991, 31(3): 573-592. [18] 闻邦椿. 机械设计手册[M]. 北京: 机械工业出版社, 2015.WEN Bangchun. Machine Design Handbook [M]. Beijing: China Machine Press, 2015. (in Chinese) |
相关文章:
|