删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于多径指纹的概率匹配室内定位方法

清华大学 辅仁网/2017-07-07

基于多径指纹的概率匹配室内定位方法
李佳徽1, 张焱2, 栾凤宇1, 李雪茹1, 周来1, 周世东1
1. 清华大学 电子工程系, 北京 100084;
2. 北京理工大学 信息与电子学院, 北京 100081
Multipath-based probabilistic fingerprinting method for indoor positioning
LI Jiahui1, ZHANG Yan2, LUAN Fengyu1, LI Xueru1, ZHOU Lai1, ZHOU Shidong1
1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
2. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要空间交替广义期望最大化(SAGE)算法可以高效地实现室内信道多径参数的估计,同时提供相对较高的精度。该文提出一种基于多径指纹的概率匹配室内定位方法,将SAGE算法得到的信道多径参数作为指纹数据进行定位,以求获得更好的定位精度和鲁棒性。通过分析典型场景下的定位实验测量结果,并与同类型的传统室内定位方法进行比较,验证了该方法的有效性。
关键词 信道多径估计,指纹,室内定位,多径参数
Abstract:The space-alternating generalized expectation-maximization (SAGE) algorithm provides efficient, accurate indoor channel multipath estimation. This paper describes a multipath-based probabilistic fingerprinting method for indoor positioning that utilizes the channel multipath parameters obtained by the SAGE algorithm as fingerprinting data to achieve better positioning accuracy and robustness. Tests of measurements in a typical indoor environment show that this method is more accurate than traditional indoor positioning methods.
Key wordschannel multipath estimationfingerprintingindoor positioningmultipath parameters
收稿日期: 2014-08-03 出版日期: 2015-08-04
ZTFLH:TN929.5
通讯作者:周世东,教授,E-mail:zhousd@tsinghua.edu.cnE-mail: zhousd@tsinghua.edu.cn
引用本文:
李佳徽, 张焱, 栾凤宇, 李雪茹, 周来, 周世东. 基于多径指纹的概率匹配室内定位方法[J]. 清华大学学报(自然科学版), 2015, 55(5): 514-519,525.
LI Jiahui, ZHANG Yan, LUAN Fengyu, LI Xueru, ZHOU Lai, ZHOU Shidong. Multipath-based probabilistic fingerprinting method for indoor positioning. Journal of Tsinghua University(Science and Technology), 2015, 55(5): 514-519,525.
链接本文:
http://jst.tsinghuajournals.com/CN/ http://jst.tsinghuajournals.com/CN/Y2015/V55/I5/514


图表:
图1 定位流程图
表1 指纹数据库结构
图2 在线阶段多径传输示例
图3 实验场景平面图
表2 信道测量设备参数
表3 不同多径数目性能比较
图4 不同στ和σα 下MPFM 定位误差均值和标准差
图5 不同στ和σα 下WMPFM 定位误差均值和标准差
图6 MPFM 误差累计概率
图7 WMPFM 误差累计概率
图8 不同定位方法误差累计概率比较
表4 不同定位算法性能比较


参考文献:
[1] Google. Indoor positioning [Z/OL]. [2014-07-01]. http://www.google.com/mobile/maps/.
[2] Qualcomm. Gimbal [Z/OL]. [2014-07-01]. http://www.qualcomm.com/media/releases/2013/12/09/qualcomm-announces-availability-its-gimbal-proximity-beacons-enable.
[3] Priyantha N B, Chakraborty A, Balakrishnan H. The cricket location-support system [C]//Proceedings of the 6th Annual International Conference on Mobile Computing and Networking. New York, NY, USA: ACM, 2000: 32-43.
[4] Pan J J, Yang Q, Pan S J. Online co-localization in indoor wireless networks by dimension reduction [C]//Proceedings of the National Conference on Artificial Intelligence. Menlo Park, CA, USA: AAAI Press, 2007: 1102-1107.
[5] Pan S J, Kwok J T, Yang Q, et al. Adaptive localization in a dynamic WiFi environment through multi-view learning [C]//Proceedings of the National Conference on Artificial Intelligence. Menlo Park, CA, USA: AAAI Press, 2007: 1108-1113.
[6] Ubisense. My world inside [Z/OL]. [2014-07-01].http://www.ubisense.net/.
[7] Liu H, Darabi H, Banerjee P, et al. Survey of wireless indoor positioning techniques and systems [J]. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 2007, 37(6): 1067-1080.
[8] Xu Y, Sun Y. Neural network-based accuracy enhancement method for WLAN indoor positioning [C]//Vehicular Technology Conference(VTC Fall), 2012 IEEE. Piscataway, NJ, USA: IEEE, 2012: 1-5.
[9] Hara S, Yabu T, Takizawa K. Introduction of MAP estimation to UWB-IR TOA localization [C]//Wireless Communication Systems (ISWCS), 2010 7th International Symposium on. Piscataway, NJ, USA: IEEE, 2010: 31-35.
[10] Luo Y, Law C L. Indoor positioning using UWB-IR signals in the presence of dense multipath with path overlapping [J].Wireless Communications, IEEE Transactions on, 2012, 11(10): 3734-3743.
[11] Bahl P, Padmanabhan V N. RADAR: An in-building RF-based user location and tracking system [C]//IEEE INFOCOM 2000. Piscataway, NJ, USA: IEEE, 2000: 775-784.
[12] Li B, Salter J, Dempster A G, et al. Indoor positioning techniques based on wireless LAN [C]//The 1st IEEE International Conference on Wireless Broadband and Ultra Wideband Communications. Piscataway, NJ, USA: IEEE, 2006: 113-119.
[13] Fleury B H, Tschudin M, Heddergott R, et al. Channel parameter estimation in mobile radio environments using the SAGE algorithm [J]. Selected Areas in Communications, IEEE Journal on, 1999, 17(3): 434-450.
[14] Fleury B H, Jourdan P, Stucki A. High-resolution channel parameter estimation for MIMO applications using the SAGE algorithm [C]//2002 International Zurich Seminar on Broadband Communications. Piscataway, NJ, USA: IEEE, 2002: 1-9.
[15] Mostofi Y, Gonzalez-Ruiz A, Gaffarkhah A, et al. Characterization and modeling of wireless channels for networked robotic and control systems-a comprehensive overview [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2009: 4849-4854.
[16] Rui Y, Zhang Y, Liu S, et al. 3.52-GHz MIMO radio channel sounder [C]//IEEE International Conference on Communications, Circuits and Systems 2008. Piscataway, NJ, USA: IEEE, 2008: 79-83.


相关文章:
[1]何强, 张秀军, 肖立民, 周世东. 大规模MIMO系统中多小区导频重用对上行可达速率的影响[J]. 清华大学学报(自然科学版), 2015, 55(5): 526-531.

相关话题/概率 实验 测量 北京 电子工程系