基于π型多晶硅电阻网络的片上衰减器 |
郭昕, 李孟委, 龚著浩, 刘泽文 |
清华大学微电子学研究所, 北京 100084 |
On-chip attenuator based on π-type polysilicon resistive network |
GUO Xin, LI Mengwei, GONG Zhuhao, LIU Zewen |
Institute of Microelectronics, Tsinghua University, Beijing 100084, China |
摘要:
| |||
摘要为了满足衰减器低成本、小尺寸和可重用的发展需求,提出一种基于π型多晶硅电阻网络的宽频带(0~20 GHz)片上衰减器。对精确控制多晶硅方块电阻(40~400Ω/sq)进行研究,通过控制硼B离子的掺杂浓度(5×1018~1.4×1020 cm-3)和热退火条件(950~1050℃, 10~30 min),得出薄膜方块电阻随工艺条件的变化规律,方阻误差小于4%。结合片上衰减器的尺寸需求选择方阻,设计了10和20 dB片上衰减器,采用HFSS三维建模软件对器件进行仿真优化。仿真结果表明:在0~20 GHz内, 10 dB衰减器的衰减精度为0.26 dB,电压驻波比(VSWR)小于1.13; 20 dB衰减器的衰减精度为0.04 dB, VSWR小于1.29。电阻网络的面积均为265μm×270μm,衰减器尺寸小于1000μm×800μm。所设计的片上衰减器精度高,适用于微波测试仪器前端。 | |||
关键词 :多晶硅电阻,电阻衰减网络,片上衰减器 | |||
Abstract:An on-chip 0~20 GHz attenuator was developed based on a π-type polysilicon resistive network as low cost attenuators with adjustable size that are compatible with other circuits. The sheet resistance(100~400Ω/sq) of the polysilicon resistor can be controlled by varying the boron-doping concentrations(5×1018~1.4×1020 cm-3) and post-annealing conditions(950~1050℃, 10~30 min). The resistance error was controlled less than 4%. The on-chip attenuator size can be set by selecting the sheet resistance for the on-chip 10 dB and 20 dB attenuating resistive networks. The devices were modelled in 3-D with HFSS with the simulation results showing excellent performance. The attenuation accuracies of the 10 dB and 20 dB attenuators were 0.26 dB and 0.04 dB over the entire frequency band(0~20 GHz), while the voltage standing wave ratios(VSWR) were less than 1.13 and 1.29, respectively. Both resistive networks were 265μm×270μm in size while both attenuators were less than 1000μm×800μm in size. These high accuracy attenuators can be used in microwave test instruments. | |||
Key words:polysilicon resistorresistive attenuation networkon-chip attenuator | |||
收稿日期: 2013-12-04 出版日期: 2015-12-01 | |||
| |||
通讯作者:刘泽文,教授,E-mail:liuzw@tsinghua.edu.cnE-mail: liuzw@tsinghua.edu.cn |
引用本文: |
郭昕, 李孟委, 龚著浩, 刘泽文. 基于π型多晶硅电阻网络的片上衰减器[J]. 清华大学学报(自然科学版), 2015, 55(11): 1264-1268. GUO Xin, LI Mengwei, GONG Zhuhao, LIU Zewen. On-chip attenuator based on π-type polysilicon resistive network. Journal of Tsinghua University(Science and Technology), 2015, 55(11): 1264-1268. |
链接本文: |
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2015.21.002或 http://jst.tsinghuajournals.com/CN/Y2015/V55/I11/1264 |
图表:
图1 样品表面的SEM 照片 |
图2 多晶硅薄膜电阻率随掺杂浓度的变化规律 |
图3 多晶硅薄膜电阻率随退火条件的变化规律 |
图4 多晶硅电阻率随退火温度的变化规律 (退火时间为30min) |
图5 π型衰减电阻网络示意图 |
图6 片上衰减器结构示意图 |
图7 片上衰减器的三维仿真结果 |
参考文献:
[1] Otto S, Bettray A, Solbach K. A distributed attenuator for K-band using standard SMD thin-film chip resistors[C]//Microwave Conference, Asia Pacific. Singapore:IEEE Press, 2009:2148-2151. [2] Jiang H C, Si X, Zhang W L, et al. Microwave power thin film resistors for high frequency and high power load applications[J]. Appl Phys Let, 2010, 97, 173504. [3] Shimamoto H, Ohnishi K, Shiba T, et al. Proposal and experimental study of a high-precision polycrystalline-silicon film resistor with a quasi-double-layer structure[J]. Electronics and Communications in Japan, Part 2, 2004, 87(7):643-650. [4] Wang J, Ren Z Y, NguyenC T C, et al. 1.156-GHz self-aligned vibrating micromechanical disk resonator[J]. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51(12):1607-1628. [5] Iannacci J, Giacomozzi F, Colpo1 S, et al., General purpose reconfigurable MEMS-Based attenuator for radio frequency and microwave applications[C]//EUROCON 2009.St-Petersberg, FL, USA:IEEE Press, 2009:1197-1205. [6] Lee C H. Heat-treatment effect on boron implantation in polycrystalline silicon[J]. J Electrochem Soc, 1982(I29):1604-2607. [7] Sitaram A R, Murarka S P, Sheng T T. Grain growth in boron doped LPCVD polysilicon films[J]. J Mater Res, 1990, 5(2):360-364. [8] Seto J Y W. The electrical properties of polycrystalline silicon[J]. J Appl Phys, 1975(46):5247-5254. [9] Mandurah M M, Saraswat K C, Kamins T I. A model for conduction in polycrystalline silicon-Part I:theory[J]. IEEE Trans Electr Dev, 1981, 28(10):1163-1171. [10] Lu N C C, Meindl J D. A quantitative model of the effect of grain size on the resistivity of polycrystalline silicon resistors[J] , IEEE Trans Electr Dev, 1980, 1(3):38-41. [11] Mandurah M M, Saraswat K C, Helms C R, et al. Dopant segregation in polycrystalline silicon[J]. J Appl Phys, 1980, 51(5755):5755-5763. [12] Suwukim K, Miyata N, Kawamura K. Resistivity of heavily doped polycrystalline silicon subjected to furnace annealing[J]. Jpn J Appl Phys, 1995, 34(4A):1748-1752. null |
相关文章:
|