删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

微生物污垢的生长模型与受力分析

清华大学 辅仁网/2017-07-07

微生物污垢的生长模型与受力分析
杨倩鹏1,陈晓东2,田磊1,史琳1()
2. 厦门大学 化学化工学院, 化学工程与生物工程系, 厦门 361005
Biofouling growth model and force analysis
Qianpeng YANG1,Xiaodong CHEN2,Lei TIAN1,Lin SHI1()
1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
2. Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

摘要:
HTML
输出: BibTeX | EndNote (RIS) 背景资料
文章导读
摘要换热设备表面形成的微生物污垢严重影响了换热效率和系统安全。为了减少微生物污垢,需要研究微生物污垢的生长机理和受力特性。该文采用3维细胞自动机模型,对微生物污垢进行了生长模拟,并模拟了混合菌种的相互抑制。针对微生物污垢形状多样的特点,提出了形状因子的概念,分析了形状因子与受力的关系。该文细胞自动机模型采用了换热设备的代表性菌种——枯草芽孢杆菌和鳗鱼气单胞菌。采用该模型模拟两种菌种的生长机理和相互抑制,结果发现换热设备抑垢应侧重于枯草芽孢杆菌。该文提出的形状因子能较好量化污垢形状,有效地描述了3种典型污垢形状。形状因子简化了污垢形状与受力的关联分析,有助于不同形状污垢的对比。

关键词 能源管理与节能,微生物污垢,细胞自动机模型,形状因子
Abstract:Biofouling on heat exchanger surfaces reduces the heat transfer rate and the system security. Thus, more investigations are needed on biofouling growth mechanisms and the forces acting on the biofouling. This study uses a three dimensional cellular automata model to simulate biofouling growth. Reciprocal inhibition between different bacteria strains is also simulated. A shape factor concept is then used to describe the various biofouling shapes to analyze the forces on the biofouling. The cellular automata model simulates Bacillus subtilis and Aeromonas ichthiosmia as typical heat exchanger bacteria strains. The model simulates the biofouling growth and reciprocal inhibition to show that the heat exchanger biofouling inhibition should focus on Bacillus subtilis. The shape factors for three typical shapes used in this work accurately model the biofouling shapes. The shape factors simplify the force analyses and are useful for comparing different biofouling shapes.

Key wordsenergy management and savingbiofoulingcellular automata modelshape factor
收稿日期: 2012-04-26 出版日期: 2015-04-16
ZTFLH: 
基金资助:国家自然科学基金面上项目(50976060);国家 “九七三” 重点基础研究项目 (2010CB227305)
引用本文:
杨倩鹏, 陈晓东, 田磊, 史琳. 微生物污垢的生长模型与受力分析[J]. 清华大学学报(自然科学版), 2014, 54(2): 247-252.
Qianpeng YANG, Xiaodong CHEN, Lei TIAN, Lin SHI. Biofouling growth model and force analysis. Journal of Tsinghua University(Science and Technology), 2014, 54(2): 247-252.
链接本文:
http://jst.tsinghuajournals.com/CN/ http://jst.tsinghuajournals.com/CN/Y2014/V54/I2/247


图表:
模型参数 设定值
枯草芽孢杆菌数量 2.5´104个/mL
枯草芽孢杆菌基质系数 0.34
枯草芽孢杆菌SMP系数 0.45 [7]
枯草芽孢杆菌EPS系数 0.18 [14]
枯草芽孢杆菌粘附概率 0.10
鳗鱼气单胞菌数量 2.5´104个/mL
鳗鱼气单胞菌基质系数 0.24
鳗鱼气单胞菌SMP系数 0.40 [7]
鳗鱼气单胞菌EPS系数 0.20 [14]
鳗鱼气单胞菌粘附概率 0.05


混合菌种模型参数
枯草芽孢杆菌和鳗鱼气单胞菌模拟结果
微生物污垢形状参数
微生物污垢典型形状因子
模型参数 设定值 来源
流速 1 m/s 换热器流速
污垢密度 900 kg/m3 实验测量
污垢导热系数 0.55 W/(m2·K) 实验测量
污垢弹性模量 200 kPa 文[18]
污垢Poisson比 0.48 文[18]
污垢屈服强度 10 kPa 文[18]
污垢拉断强度 12 kPa 文[18]
模拟尺度 500 μm
最小网格尺度 1 μm
边界条件 恒壁温


多物理场模拟参数
污垢周围多物理场分布
污垢形状描述方法及其与压力、剪切力和应力极值的关联


参考文献:
[1] TIAN Lei, CHEN Xiaodong, YANG Qianpeng, et al.Effect of silica dioxide particles on the evolution of biofouling by Bacillus subtilis in plate heat exchangers relevant to a heat pump system used with treated sewage[J].Chemical Engineering Journal, 2012, 188: 47-56.
[2] TIAN Lei, CHEN Xiaodong, YANG Qianpeng, et al.Effect of calcium ions on the evolution of biofouling by Bacillus subtilis in plate heat exchangers simulating the heat pump system used with treated sewage in the 2008 Olympic Village[J]. Colloids and Surfaces B: Biointerfaces, 2012, 94: 309-316.
[3] 史琳, 昝成, 杨文言. 城镇二级出水换热表面混合污垢的成分及形貌[J]. 清华大学学报: 自然科学版, 2009, 49(2): 236-239. SHI Lin, ZAN Cheng, YANG Wenyan. Composition and morphology of composite fouling by municipal secondary effluent on heat transfer surfaces[J]. J Tsinghua Univ: Sci and Tech, 2009, 49(2): 236-239. (in Chinese)
[4] TIAN Lei, CHEN Xiaodong, YANG Qianpeng, et al.Interaction effects of silica dioxide particles and calcium ions on the evolution of biofouling in plate heat exchangers relevant to a heat pump heat recovery system from treated sewage[J]. International Journal of Materials and Product Technology, 2012, 44(1/2): 67-76.
[5] Eberl H J, ParkerD F, Vanloosdrecht M C. A new deterministic spatiotemporal continuum model for biofilm development[J]. Computational and Mathematical Methods in Medicine, 2001, 3(3): 161-175.
[6] Laspidou C S, Rittmann B E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass[J]. Water Research, 2002, 36: 2711-2720.
[7] Laspidou C S, Rittmann B E. Non-steady state modeling of extracellular polymeric substances, soluble microbial products, and active and inert biomass[J]. Water Research, 2002, 36: 1983-1992.
[8] Eberl H J, Khassehkhan H, Demaret L. A mixed-culture model of a probiotic biofilm control system[J]. Computational and Mathematical Methods in Medicine, 2010, 11(2): 99-118.
[9] Picioreanu C, Kreft J U, Van Loosdrecht M C. Particle-based multidimensional multispecies biofilm model[J]. Applied and Environmental Microbiology, 2004, 70(5): 3024-3040.
[10] Habimana O, Guillier L, Kulakauskas S, et al.Spatial competition with Lactococcus lactis in mixed-species continuous-flow biofilms inhibits Listeria monocytogenes growth[J]. Biofouling, 2011, 27(9): 1065-1072.
[11] Hao S, Moran B, Chopp D. Biofilm growth: Perspectives on two-phase mixture flow and fingerings formation [C]// IUTAM Symposium on Mechanics and Reliability of Actuating Materials. New York, NJ: Springer Press, 2006: 273-290.
[12] Rice A R, Hamilton M A, Camper A K. Movement, replication, and emigration rates of individual bacteria in a biofilm[J]. Microbial Ecology, 2003, 45: 163-172.
[13] 杨倩鹏, 陈晓东, 田磊, 等. 不同营养下混合菌种微生物污垢生长机理与交互作用[J]. 化工学报, 2013, 64(3): 1036-1041. YANG Qianpeng, CHEN Xiaodong, TIAN Lei, et al.Growth and interaction mechanism of multi-strain biofouling under different nutrient levels[J]. CIESC Journal, 2013, 64(3): 1036-1041. (in Chinese)
[14] Ivleva N P, Wagner M, Horn H, et al.Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy[J]. Analytical and Bioanalytical Chemistry, 2009, 393: 197-206.
[15] YANG Qianpeng, Wilson D I, CHEN Xiaodong, et al.Experimental investigation of interactions between the temperature field and biofouling in a synthetic treated sewage stream[J]. Biofouling, 2013, 29(5): 513-523.
[16] Dobretsov S, Teplitski M, Paul V. Mini-review: Quorum sensing in the marine environment and its relationship to biofouling[J]. Biofouling, 2009, 25(5): 413-427.
[17] TIAN Lei, YANG Qianpeng, LI Minzhi, et al. Reuse of thermal energy in municipal reclaimed water: Assessment for transmission distance [J]. Applied Mechanics and Materials, 2012, 148/149: 883-886.
[18] Abe Y, Polyakov P, Skali-Lami S, et al.Elasticity and physicochemical properties during drinking water biofilm formation[J]. Biofouling, 2011, 27(7): 739-750.


相关文章:
[1]王振波, 张君, 罗孙一鸣. 喷水法成型纤维网增强水泥基板材抗弯性能[J]. 清华大学学报(自然科学版), 2014, 54(5): 551-555.
[2]蔡志鹏, 吴健栋, 汤之南, 张伯奇, 潘际銮, 刘霞. 汽轮机焊接转子接头低周疲劳过程损伤变量的复合分析法[J]. 清华大学学报(自然科学版), 2014, 54(2): 178-184.
[3]刘佳君, 孙振国, 张文增, 陈强. 两端吸附式爬壁机器人机械臂运动误差修正算法[J]. 清华大学学报(自然科学版), 2014, 54(2): 185-190.
[4]赵海燕, 徐兴全, 于兴哲, 朱小武. 旋挖钻机钻杆键条焊接接头的残余应力[J]. 清华大学学报(自然科学版), 2014, 54(2): 191-196.
[5]彭卓, 邓焱, 马骋, 熊剑平, 尹永利. 基于FPGA的高精度正弦信号发生器设计与实现[J]. 清华大学学报(自然科学版), 2014, 54(2): 197-201.
[6]窦福印, 王鹏, 余兴龙. 提高角度法SPR检测系统分辨率的方法[J]. 清华大学学报(自然科学版), 2014, 54(2): 202-206.
[7]孟凡, 董永贵. 基于方波脉冲激励的电导率测量方法[J]. 清华大学学报(自然科学版), 2014, 54(2): 207-211.
[8]潘玉龙, 王国磊, 朱丽, 陈雁, 陈恳. 管道喷涂机器人喷枪运动速度优化[J]. 清华大学学报(自然科学版), 2014, 54(2): 212-216.
[9]任怀艺, 王伯雄, 罗秀芝. 鞋楦定制CAD系统中NURBS特征曲线的弧长约束变形[J]. 清华大学学报(自然科学版), 2014, 54(2): 217-222.
[10]刘向锋, 徐辰, 黄伟峰. 基于半解析法的极端工况干气密封动态特性研究与参数设计[J]. 清华大学学报(自然科学版), 2014, 54(2): 223-228.
[11]冯蘅, 李清海, 甘超, 蒙爱红, 张衍国. 循环流化床返料装置1维动力学模型[J]. 清华大学学报(自然科学版), 2014, 54(2): 229-234.
[12]蒙爱红, 龙艳秋, 周会, 张衍国, 李清海. 可燃固体废弃物热化学反应表征探索[J]. 清华大学学报(自然科学版), 2014, 54(2): 235-239.
[13]AbdoulayeCoulibaly, 林曦鹏, 毕景良, 柯道友. 过冷池沸腾中气泡聚并对壁面换热影响的实验研究[J]. 清华大学学报(自然科学版), 2014, 54(2): 240-246.
[14]杨杰, 翁文国. 基于改进无偏灰色模型的燃气供气量的预测[J]. 清华大学学报(自然科学版), 2014, 54(2): 145-148.
[15]黄超, 黄全义, 申世飞, 疏学明. 突发事件案例表示方法[J]. 清华大学学报(自然科学版), 2014, 54(2): 149-152.

相关话题/微生物 细胞 能源 管理 物理