删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

循环流化床返料装置1维动力学模型

清华大学 辅仁网/2017-07-07

循环流化床返料装置1维动力学模型
冯蘅,李清海,甘超,蒙爱红,张衍国()
One-dimensional hydrodynamic model of the recycling valve in a circulating fluidized bed
Heng FENG,Qinghai LI,Chao GAN,Aihong MENG,Yanguo ZHANG()
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory for CO2Utilization and Reduction Technology, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China

摘要:
HTML
输出: BibTeX | EndNote (RIS) 背景资料
文章导读
摘要为研究物料循环流率和通气量等因素对返料装置立管中料柱高度的影响,该文依据Loop-seal气动阀门和立管内气固流动特性,建立了1维动力学模型。模型的计算值与实验结果基本吻合。在一定范围内,随着物料循环流率的增大,返料装置通过分配进入立管和排料室的通气量,增加料柱高度,实现回路的压力平衡。若物料循环流率超过临界值,返料装置将失去自适应能力,物料会溢出立管并进入分离器,破坏系统的稳定运行。适当增大通气量,可增强返料装置的自适应性,并扩大稳定运行的范围。该模型为立管高度较低的循环流化床返料装置的设计和优化提供了参考。

关键词 循环流化床,返料装置,1维动力学模型,立管料柱高度
Abstract:This study focuses on the influence of key factors, such as solids circulation rate and the aeration rate, on the solids height in the standpipe of the recycling valve. A one-dimensional hydrodynamic model is developed based on the hydrodynamics of the gas-solid flow in the loop-seal and the standpipe. The predicted heights agree well with experimental data. Redistribution of the aeration ratio in the standpipe and the discharge chamber increases the solids height in the standpipe to adapt to increasing solids circulation rates and to balance the pressures in the circuit. The results also indicate that if the solids circulation rate is over a critical value, the recycling valve will lose its self-adaptability and the solids will rise out of the standpipe and into the cyclone separator. The self-adaptability can be enhanced and the stable operation range of the recycling valve can be extended by properly increasing the aeration rate. This model is useful for the design and optimization of circulating fluidized bed recycling valves with relatively short standpipes.

Key wordscirculating fluidized bedrecycling valveone-dimensional hydrodynamic modelstandpipe solids height
收稿日期: 2013-05-23 出版日期: 2015-04-16
ZTFLH: 
基金资助:国家 “九七三” 重点基础研究项目 (2011CB201502);国家“十二五”科技支撑计划项目(2010BAC66B03)
引用本文:
冯蘅, 李清海, 甘超, 蒙爱红, 张衍国. 循环流化床返料装置1维动力学模型[J]. 清华大学学报(自然科学版), 2014, 54(2): 229-234.
Heng FENG, Qinghai LI, Chao GAN, Aihong MENG, Yanguo ZHANG. One-dimensional hydrodynamic model of the recycling valve in a circulating fluidized bed. Journal of Tsinghua University(Science and Technology), 2014, 54(2): 229-234.
链接本文:
http://jst.tsinghuajournals.com/CN/ http://jst.tsinghuajournals.com/CN/Y2014/V54/I2/229


图表:
CFB物料循环示意图
返料装置的经验关联式及动力学模型
立管中料柱薄层受力分析
供料室、孔口、排料室气固流动示意图
Ds Dr Ls Ao Zr
80 80 4×103 40×40 300


返料装置参数mm
物料参数 dp/μm ρp/(t·m-3) εmf ε0 ϕ0/(o)
石英砂I 78 3.12 0.510 0.479 33.3
石英砂II 101 3.12 0.476 0.466 38.6
石英砂III 157 3.12 0.461 0.452 43.9
FCC颗粒 65 1.72 0.494 0.490


物料参数
运行参数 Loop-seal压降/kPa 料柱高度Ls/m
实验数据 1.00 (Kim等[10] ) 0.50(Basu等[9])
模型计算值 0.98 0.46


Loop-seal压降及料柱高度的模型计算值与实验数据比较
在不同外部压ΔP30差下料柱高度Ls随排料速率Gp变化(ds= 78 μm)
返料装置各部件相对通气量Q/(A·Umf )随物料循环流率Gs变化(dp=78 μm, Ls=1.0 m)
料柱高度Ls随供料室相对通气量Q1/(A·Umf )变化规律


参考文献:
[1] Basu P, Cheng L. An analysis of loop seal operations in a circulating fluidized bed[J]. Chemical Engineering Research and Design, 2000, 78(7): 991-998.
[2] 张洪岩. 小型流化床锅炉回料系统常见问题分析[J]. 电站系统工程, 2010, 26(5): 74. ZHANG Hongyan. Analysis of common problems in small CFB return system[J]. Power System Engineering, 2010, 26(5): 74. (in Chinese)
[3] 孙继常, 何国光. 中小型高温绝CFB锅炉返料器开裂问题的探讨及对策[J]. 工业锅炉, 2010(4): 55-56. SUN Jichang, HE Guoguang. Discussion and countermeasu res on return-feeder cracking of small and medium size heat insulating CFB boiler[J]. Industrial Boiler, 2010(4): 55-56. (in Chinese)
[4] 冯蘅. 卧式循环流化床部颗粒浓度分布研究 [D]. 北京: 清华大学, 2011. FENG Heng. The Research of the Particle Concentration Distribution in the Horizontal Circulating Fluidized Bed [D]. Beijing: Tsinghua University, 2011. (in Chinese)
[5] 王庆功, 汪佩宁, 杨海瑞, 等. N 阀和 U 阀内流动结构比较的数值模拟[J]. 锅炉技术, 2013, 44(5): 22-26. WANG Qinggong, WANG Peining, YANG Hairui, et al.Comparison of the gas-solid flow characteristics between an N loop-seal and U loop-seal with numerical simulation[J]. Boiler Technology, 2013, 44(5): 22-26. (in Chinese)
[6] 李清海, 甘超, 冯蘅, 等. 卧式循环流化床回料器性能实验研究[J]. 燃烧科学与技术, 2013, 19(3): 1-7. LI Qinghai, GAN Chao, FENG Heng, et al.Experimental study on the performance of loop-seal in a horizontal circulating fluidized bed boiler[J]. Journal of Combustion Science and Technology, 2013, 19(3): 1-7. (in Chinese)
[7] 李清海, 周晓彬, 陈庚,等. 卧式循环流化床锅炉燃烧的数值模拟[J]. 清华大学学报: 自然科学版, 2013, 53(3): 44-48. LI Qinghai, ZHOU Xiaobin, CHEN Geng, et al.Numerical investigation of the flow and combustion in a horizontal circulating fluidized bed boiler[J]. Journal of Tsinghua University : Science and Technology, 2013, 53(3): 44-48. (in Chinese)
[8] JI Xuanyu, LU Xiaofeng, HE Honghao. Study on the gas-solid flow and heat transfer characteristics of evaporating recycle valve[J]. Powder Technology, 2012, 228: 219-227.
[9] Basu P, Butler J. Studies on the operation of loop-seal in circulating fluidized bed boilers[J]. Applied Energy, 2009, 86(9): 1723-1731.
[10] Kim S W, Kim S D. Effects of particle properties on solids recycle in loop-seal of a circulating fluidized bed[J]. Powder Technology, 2002, 124(1/2): 76-84.
[11] Lim K S, Peeler P, Close R, et al.Estimation of Solids Circulation Rate in CFB from Pressure Loop Profiles[M]. Werther J, ed. Circulating Fluidized Bed Technology VI. Frankfurt am Main, Germany: DECHEMA, 1999: 819-824.
[12] 杨雪平. CFB炉膛风帽区域与回料阀内两相流动特性的研究 [D]. 上海: 上海交通大学, 2009. YANG Xueping. Research on Characteristics of Gas-Solid Flow in Air Nozzle Area in the Furnace and U-Valve in CFB Boiler [D]. Shanghai: Shanghai Jiao Tong University, 2009. (in Chinese)
[13] 彭莉, 李洪钟, 朱庆山. U型阀结构下颗粒流态化排料的数学模型[J]. 过程工程学报, 2012, 12(3): 382-387. PENG Li, LI Hongzhong, ZHU Qingshan. Hydrodynamic modeling on fluidization discharging of particles under U-shape valve structure[J]. The Chinese Journal of Process Engineering, 2012, 12(3): 382-387. (in Chinese)
[14] LI Changjin, LI Hongzhong, ZHU Qingshan. A hydrodynamic model of loop-seal for a circulating fluidized bed[J]. Powder Technology, 2014, 252: 14-19.
[15] 李洪钟, 郭慕孙. 非流态化气固两相流: 理论及应用 [M]. 北京: 北京大学出版社, 2002. LI Hongzhong, Kwauk Mooson. Non Fluidized Gas-Solids Fluidization: Theory and Application [M]. Beijing: Peking University Press, 2002. (in Chinese)
[16] Rhodes M. Introduction to Particle Technology[M]. Chichester, UK: John Wiley & Sons, 2008.
[17] Klinzing G E, Rizk F, Marcus R, et al.Pneumatic Conveying of Solids: A theoretical and Practical Approach[M]. Dordrecht : Springer, 2010.
[18] Johanson K. Rathole stability analysis for aerated powder materials[J]. Powder Technology, 2004, 141(1/2): 161-170.


相关文章:
[1]王振波, 张君, 罗孙一鸣. 喷水法成型纤维网增强水泥基板材抗弯性能[J]. 清华大学学报(自然科学版), 2014, 54(5): 551-555.
[2]蔡志鹏, 吴健栋, 汤之南, 张伯奇, 潘际銮, 刘霞. 汽轮机焊接转子接头低周疲劳过程损伤变量的复合分析法[J]. 清华大学学报(自然科学版), 2014, 54(2): 178-184.
[3]刘佳君, 孙振国, 张文增, 陈强. 两端吸附式爬壁机器人机械臂运动误差修正算法[J]. 清华大学学报(自然科学版), 2014, 54(2): 185-190.
[4]赵海燕, 徐兴全, 于兴哲, 朱小武. 旋挖钻机钻杆键条焊接接头的残余应力[J]. 清华大学学报(自然科学版), 2014, 54(2): 191-196.
[5]彭卓, 邓焱, 马骋, 熊剑平, 尹永利. 基于FPGA的高精度正弦信号发生器设计与实现[J]. 清华大学学报(自然科学版), 2014, 54(2): 197-201.
[6]窦福印, 王鹏, 余兴龙. 提高角度法SPR检测系统分辨率的方法[J]. 清华大学学报(自然科学版), 2014, 54(2): 202-206.
[7]孟凡, 董永贵. 基于方波脉冲激励的电导率测量方法[J]. 清华大学学报(自然科学版), 2014, 54(2): 207-211.
[8]潘玉龙, 王国磊, 朱丽, 陈雁, 陈恳. 管道喷涂机器人喷枪运动速度优化[J]. 清华大学学报(自然科学版), 2014, 54(2): 212-216.
[9]任怀艺, 王伯雄, 罗秀芝. 鞋楦定制CAD系统中NURBS特征曲线的弧长约束变形[J]. 清华大学学报(自然科学版), 2014, 54(2): 217-222.
[10]刘向锋, 徐辰, 黄伟峰. 基于半解析法的极端工况干气密封动态特性研究与参数设计[J]. 清华大学学报(自然科学版), 2014, 54(2): 223-228.
[11]杨杰, 翁文国. 基于改进无偏灰色模型的燃气供气量的预测[J]. 清华大学学报(自然科学版), 2014, 54(2): 145-148.
[12]黄超, 黄全义, 申世飞, 疏学明. 突发事件案例表示方法[J]. 清华大学学报(自然科学版), 2014, 54(2): 149-152.
[13]蔡东阳, 卓子寒, 王婕, 武建安, 唐劲天. 基于模拟退火算法的磁感应治疗热籽分布[J]. 清华大学学报(自然科学版), 2014, 54(2): 153-158.
[14]陈利高, 刘晓波, 龚建, 王侃, 董传江, 荣茹, 鲁艺. 中子多重性探测器搭建及参数标定[J]. 清华大学学报(自然科学版), 2014, 54(2): 159-163.
[15]苏健, 曾志, 程建平, 李君利. Monte Carlo方法的最优源项偏倚抽样密度函数[J]. 清华大学学报(自然科学版), 2014, 54(2): 164-171.

相关话题/实验 设计 系统 计算 北京