2.中国科学院生态环境研究中心,环境水质学国家重点实验室,北京 100085
1.Tianjin Key Laboratory of Water Quality Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
2.National Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China
酮连氮法制水合肼会产生大量的副产废盐,这些副产盐因其中所含杂质有机物较多而无法直接回用于离子膜电解过程。采用水洗法处理此类废盐,可基本去除废盐中的杂质有机物,使废盐能够满足电解制碱的要求。为进一步探究水洗法处理废盐过程中各因素间的影响关系,采用响应曲面法,分别建立了废盐失重率和UV
去除率与液固质量比、水洗次数和盐温度的优化模型,优化了工艺所采用的实验条件。结果表明,液固质量比、水洗次数和盐温度3者对废盐水洗过程的影响的强弱为,水洗次数>液固质量比>盐温度。根据模型预测,最佳工艺条件为,液固质量比为5: 8、水洗次数2次、盐温度25 ℃、停留时间5 min。在最佳工艺条件下的废盐失重率和UV
去除率分别为12.6%和97.8%,实验结果与模型预测结果基本一致。处理后的废盐可满足离子膜电解用盐标准,水洗法可有效去除废盐中的杂质有机物,响应曲面法的优化结果对实际水洗过程具有指导意义。
The production of hydrazine hydrate by the ketazine method can produce a large amount of by-product waste salt. These by-product salts cannot be directly reused in the ion-exchange membrane electrolysis process because they contain more organic impurities. The use of water washing to treat this kind of waste salt can achieve the basic removal of organic impurities in the salt, so that the waste salt can meet the requirements of the electrolytic production of sodium hydroxide. To explore the influences of various factors in the water washing process for treating the waste salt by-product of hydrazine hydrate produced by the ketazine method, the response surface method was used to establish the models of waste salt weightlessness rate and UV
removal rate with liquid-solid mass ratio, washing times and the salt temperature and the experimental conditions used in the process were optimized. The results showed that the effects of liquid-solid mass ratio, the washing times and the salt temperature on the waste salt water washing process are: water washing number> Liquid mass ratio> salt temperature. According to the model predictions, the best process conditions were as follows: liquid-solid mass ratio 5: 8, washing times 2 times, salt temperature 25 ℃, and residence time 5 min. Under these conditions, the waste salt weightlessness rate and UV
removal rate were 12.6% and, 97.8% respectively, which were basically consistent with the predicted results. The treated waste salt could meet the salt standard for diaphragm electrolysis, indicating that the water washing method is feasible to remove the organic impurities in the waste salt. The response surface method has guiding significance for the actual washing process.
.
液固质量比和水洗次数对失重率的响应曲面和等高线图
Response surface and contour plot of liquid-solid mass ratio and washing times on weightlessness rate
Response surface and contour plot of liquid-solid mass ratio and washing times on UV
Response surface and contour plot of liquid-solid mass ratio and waste salt temperature on UV
Response surface and contour plot of washing times and waste salt temperature on UV
Ultraviolet absorption spectra of waste salt before and after treatment
Three-dimensional fluorescence spectra of waste salt before and after treatment
[1] | 赖正华. 酮连氮法水合肼生产中废盐水的综合利用[J]. 云南化工, 2011, 38(3): 64-66. doi: 10.3969/j.issn.1004-275X.2011.03.016 |
[2] | 王嘉豪, 马云超, 马敬环, 等. PAC-PPFC复合混凝预处理酮连氮法制肼废水[J]. 水处理技术, 2019, 45(9): 29-34. |
[3] | 李唯实, 黄泽春, 雷国元, 等. 典型农药废盐热处理过程动力学特征[J]. 中国环境科学, 2018, 38(7): 2691-2698. doi: 10.3969/j.issn.1000-6923.2018.07.040 |
[4] | 刘凯, 慕慧峰, 徐向平, 等. 离子膜电解法槽电压的影响因素[J]. 氯碱工业, 2019, 55(6): 12-14. doi: 10.3969/j.issn.1008-133X.2019.06.005 |
[5] | BAI Y, BAO Y B, CAI X L, et al. Feasibility of disposing waste glyphosate neutralization liquor with cement rotary kiln[J]. Journal of Hazardous Materials, 2014, 278: 500-505. doi: 10.1016/j.jhazmat.2014.06.017 |
[6] | 李华, 司马菁珂, 罗启仕, 等. 危险废物焚烧飞灰中重金属的稳定化处理[J]. 环境工程学报, 2012, 6(10): 3740-3746. |
[7] | 李绪宾. 工业废盐流化处理的工艺研究[D]. 青岛: 中国石油大学(华东), 2017. |
[8] | 陈文杰, 黄晓东, 刘其海, 等. 工业高盐废水混合盐高效分离与回收研究[J]. 广州化工, 2019, 47(4): 61-63. |
[9] | CHEN C Y, CHEN W H, ILHAM Z U L. Effects of torrefaction and water washing on the properties and combustion reactivity of various wastes[J]. International Journal of Energy Research, 2020, 45(6): 81. |
[10] | 周颖华, 丁克鸿. 环氧树脂高含盐废水处理及盐的资源化研究[J]. 河北化工, 2012, 35(4): 46-49. |
[11] | 宁文琳, 龚德慧. 呋喃酚醚化废盐渣中有机物回收利用的实验研究[J]. 精细化工中间体, 2010, 40(1): 63-65. |
[12] | CHEN Z L, CHANG W, JIANG X G, et al. Leaching behavior of circulating fluidised bed MSWI air pollution control residue in washing process[J]. Energies, 2016, 9(9): 743. doi: 10.3390/en9090743 |
[13] | 陆振荣. 尿素法水合肼生产过程中废弃物的综合利用[J]. 中国氯碱, 2004(6): 37-38. doi: 10.3969/j.issn.1009-1785.2004.06.014 |
[14] | 吴彦瑜, 周少奇, 覃芳慧, 等. 响应面法优化Fenton处理难降解反渗透垃圾浓缩渗滤液[J]. 环境工程学报, 2010, 4(11): 2494-2498. |
[15] | 张彬, 谢明勇, 殷军艺, 等. 响应面分析法优化超声提取茶多糖工艺的研究[J]. 食品科学, 2008, 29(9): 234-238. doi: 10.3321/j.issn:1002-6630.2008.09.050 |
[16] | 张智, 尹晓静. 响应面法优化电化学法处理高盐榨菜废水工艺[J]. 环境工程学报, 2012, 6(5): 1473-1477. |
[17] | 李斌, 雷月, 孟宪军, 等. 响应面实验优化超声波辅助提取蓝靛果多酚工艺及其抗氧化活性[J]. 食品科学, 2015, 36(22): 33-39. doi: 10.7506/spkx1002-6630-201522006 |
[18] | 林伟雄, 顾海奇, 武纯, 等. 响应面法优化化学沉淀螯合生物絮凝处理含镍废水[J]. 环境工程学报, 2021, 15(2): 493-500. doi: 10.12030/j.cjee.202005139 |
[19] | 王刚, 王馨, 宋小三, 等. 响应曲面法中BBD和CCD在优化巯基乙酰化壳聚糖制备条件中的比较[J]. 环境工程学报, 2018, 12(9): 2502-2511. doi: 10.12030/j.cjee.201801208 |
[20] | 邹建国, 刘飞, 刘燕燕, 等. 响应面法优化微波辅助提取枳壳中总黄酮工艺[J]. 食品科学, 2012, 33(2): 24-28. |
[21] | 金林, 赵万顺, 郭巧生, 等. 响应面法优化白芍提取工艺的研究[J]. 中国中药杂志, 2015, 40(15): 2988-2993. |
[22] | 韩鼎, 郑建荣. 工程优化设计中的近似模型技术[J]. 华东理工大学学报(自然科学版), 2012, 38(6): 762-768. |
[23] | 祝方, 李璐玮, 程畅, 等. Box-Behnken响应面分析法对双阳极电Fenton法处理垃圾渗滤液工艺的优化[J]. 环境工程学报, 2016, 10(4): 1749-1754. doi: 10.12030/j.cjee.20160426 |
[24] | 方鹏, 吴云海, 范翼昂, 等. 超声吹脱-次氯酸钠氧化工艺处理酮连氮法制肼废水[J]. 化工环保, 2017, 37(2): 194-199. doi: 10.3969/j.issn.1006-1878.2017.02.012 |
[25] | 马淑霞. 水合肼副产盐渣用于生产离子膜法烧碱研究[J]. 化工管理, 2015(35): 183. doi: 10.3969/j.issn.1008-4800.2015.35.162 |
[26] | 杨晓敏, 苏文洪, 黄旭冰, 等. 原水UV254与CODMn相关性研究[J]. 城镇供水, 2019(1): 34-39. doi: 10.3969/j.issn.1002-8420.2019.01.013 |
[27] | 杨苗苗. 紫外分光光度计UV254指标的研究[J]. 海河水利, 2017(2): 58-61. doi: 10.3969/j.issn.1004-7328.2017.02.018 |
[28] | 林星杰, 杨慧芬, 宋存义. UV254在水质监测中应用的研究[J]. 能源与环境, 2006(1): 22-24. doi: 10.3969/j.issn.1672-9064.2006.01.007 |
[29] | 赵英杰, 杨唐, 李璞. UV254与COD、TOC相关分析及氯离子对测定UV254的影响[J]. 安徽农业科学, 2015, 43(7): 253-255. doi: 10.3969/j.issn.0517-6611.2015.07.088 |
[30] | 金伟, 范瑾初. 紫外吸光值(UV254)作为有机物替代参数的探讨[J]. 工业水处理, 1997, 17(6): 30-32. doi: 10.11894/1005-829x.1997.17(6).30 |
[31] | LIU Y J, CHEN F X, GUO H H. Optimization of bayberry juice spray drying process using response surface methodology[J]. Food Science Biotechnology, 2017, 26(5): 1235-1244. doi: 10.1007/s10068-017-0169-0 |
[32] | MAHATO J K, GUPTA S K. Modification of Bael fruit shell and its application towards natural organic matter removal with special reference to predictive modeling and control of THMs in drinking water supplies[J]. Environmental Technology & Innovation, 2020, 18: 1000666. |
[33] | 王朵, 程方, 王赛璐, 等. 响应面中心组合设计法优化制备载磁活性炭[J]. 环境工程学报, 2016, 10(8): 4079-4086. doi: 10.12030/j.cjee.201503083 |
[34] | ABDEL-FATTAH Y R, SAEED H M, GOHAR Y M, et al. Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs[J]. Process Biochemistry, 2005, 40(5): 1707-1714. doi: 10.1016/j.procbio.2004.06.048 |
[35] | 张勇, 何士龙. 响应面法优化混凝预处理垃圾渗滤液[J]. 河北师范大学学报(自然科学版), 2012, 36(4): 403-408. |
[36] | LI K, WANG Y S, ZHANG X, et al. Raw material ratio optimisation of magnesium oxychloride cement using response surface method[J]. Construction and Building Materials, 2020, 272: 121648. |
[37] | 狄军贞, 赵微, 朱志涛, 等. 响应曲面法优化强化混凝工艺处理微污染水[J]. 环境工程学报, 2017, 11(1): 27-32. doi: 10.12030/j.cjee.201508164 |
[38] | 谢莉, 刘吉明, 逯新宇, 等. 电催化氧化法-活性炭深度处理焦化废水[J/OL]. 工业水处理: 1-11[2021-04-22]. http://kns.cnki.net/kcms/detail/12.1087.X.20210303.0906.002.html. |
[39] | 曹国民, 刘勇弟, 盛梅, 等. 高盐废水资源化处理方法: CN102689975A[P]. 2012-09-26. |
[40] | 杨颖, 宋数宾, 孙祥, 等. Fenton氧化去除高盐废水中有机物: 过程优化控制研究[J]. 广东化工, 2012, 39(10): 153-154. doi: 10.3969/j.issn.1007-1865.2012.10.083 |
[41] | 洪芳. 催化湿式过氧化物氧化法处理环氧树脂废水[D]. 上海: 华东理工大学, 2014. |