2.军事科学院军事医学研究院环境医学与作业医学研究所,天津 300050
1.School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
2.Institute of Environmental and Operational Medicine, Academy of Military Medicine, Chinese Academy of Military Science, Tianjin 300050, China
为研究聚糖菌(GAOs)模型的群落结构及糖原相关功能基因的表达变化,通过厌氧末排水及磷限制条件的双重策略,建立快速、稳定的聚糖菌模型。应用宏基因组学技术测定了GAOs体系菌群结构的动态变化,并分析在驯化过程中糖原代谢通路关键功能基因的调节作用。结果表明,经过40 d左右的驯化,反应器呈现出典型的GAOs代谢模式,厌氧利用糖原吸收乙酸合成PHA,好氧消耗PHA补充糖原。稳定期的厌氧期糖原降解/VFA吸收、PHA合成/VFA吸收的值分别为1.036、2.468,与GAOs的化学计量学模型接近。宏基因组结果显示,反应器中包含
3类GAOs,分别占细菌总数的7.13%、1.86%和0.20%,稳定期GAOs丰度增长为接种污泥的10.4倍左右。驯化过程对反应器内的糖原合成酶(glgA)和1, 4-α-葡聚糖分支酶(GBE1, glgB)等糖原代谢相关基因丰度有明显影响,且系统中同时存在糖酵解途径(glycolytic pathway)和ED途径(Entner-Doudoroff pathway)。以上结果从微观结构揭示了GAOs的富集过程菌群结构及糖原相关功能基因的作用,可为完善GAOs的代谢机理提供参考。
A fast and stable model of glycogen accumulating organisms (GAOs) was established to study the community structure of GAOs model and the changes in the expression of glycogen-related functional genes by the dual strategies of anaerobic drainage and phosphorus restriction. The dynamic changes of bacterial community structure of GAOs system were determined by metagenomics. The regulation of key functional genes of glycogen metabolism pathway in the cultivable process was analyzed. Results showed that after about 40 days of domestication, the reactor showed stable metabolic characteristics of GAOs, whereby glycogen was consumed to absorb acetate to synthesize PHA in the anaerobic period and PHA was consumed to supplement glycogen in the aerobic period. The values of glycogen degradation/VFA absorption and PHA synthesis/VFA absorption in stable anaerobic phase were 1.036 and 2.468 respectively, which were close to the stoichiometric model of GAOs. The metagenomic results showed that
” in the reactor accounted for about 7.13%, 1.86% and 0.20% of the total bacteria, respectively, and the GAOs abundance in the stable period was about 10.4 times that of initial sludge. The process had a significant effect on the abundance of glycogen metabolism-related genes such as glycogen synthetase (glgA) and 1, 4- α-glucan branching enzyme (GBE1, glgB) in the reactor, and there were both glycolysis pathway and ED pathway in the system. The microbial community structure and the function genes of glycogen-related function in the enrichment process of GAOs were revealed from the microstructure, which provided reference for improving the theory of metabolic mechanism of GAOs.
.
反应器驯化中正磷酸盐、乙酸钠、胞内糖原和PHA的单周期变化图及驯化期间MLSS和SVI变化
Single-cycle changes of orthophosphate, sodium acetate, intracellular glycogen and PHA during acclimation and changes of MLSS and SVI during acclimation
Variation of relative abundance distribution of gate level during acclimation
)相对丰度分布及驯化期间总GAOs的相对丰度变化
Distribution of relative abundance of main species (>0.5%) at genus level during domestication and relative abundance changes of total GAOs during domestication
Scanning electron microscope images of the reactor before and after acclimation
Glycogen metabolism pathway in GAOs reactor
Changes in relative abundance of major genes in glycogen metabolism during domestication
Comparison of the anaerobic biochemical transformations indicators from this paper with the metabolic models for acetate uptake by PAOs and GAOs
[1] | MINO T, LIU W T, KURISU F, et al. Modelling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes[J]. Water Science & Technology, 1995, 31(2): 25-34. |
[2] | GUO G, WU D, HAO T, et al. Functional bacteria and process metabolism of the denitrifying sulfur conversion-associated enhanced biological phosphorus removal (DS-EBPR) system: An investigation by operating the system from deterioration to restoration[J]. Water Research, 2016, 95: 289-299. doi: 10.1016/j.watres.2016.03.013 |
[3] | LAW Y, KIRKEGAARD R H, COKRO A A, et al. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions[J]. Scientific Reports, 2016, 6(1): 25719. doi: 10.1038/srep25719 |
[4] | MCILROY S J, ONETTO C A, MCILROY B, et al. Genomic and in situ analyses reveal the Micropruina spp. as abundant fermentative glycogen accumulating organisms in enhanced biological phosphorus removal systems[J]. Frontiers in Microbiology, 2018, 9: 1004. doi: 10.3389/fmicb.2018.01004 |
[5] | SHEN N, ZHOU Y. Enhanced biological phosphorus removal with different carbon sources[J]. Applied Microbiology and Biotechnology, 2016, 100(11): 4735-4745. doi: 10.1007/s00253-016-7518-4 |
[6] | PISCO A R, BENGTSSON S, WERKER A, et al. Community structure evolution and enrichment of glycogen-accumulating organisms producing polyhydroxyalkanoates from fermented molasses[J]. Applied and Environmental Microbiology, 2009, 75(14): 4676-4686. doi: 10.1128/AEM.02486-08 |
[7] | BENGTSSON S, WERKER A, CHRISTENSSON M, et al. Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater[J]. Bioresource Technology, 2008, 99(3): 509-516. doi: 10.1016/j.biortech.2007.01.020 |
[8] | JI J, PENG Y, MAI W, et al. Achieving advanced nitrogen removal from low C/N wastewater by combining endogenous partial denitrification with anammox in mainstream treatment[J]. Bioresource Technology, 2018, 270: 570-579. doi: 10.1016/j.biortech.2018.08.124 |
[9] | MENG Q, ZENG W, WANG B, et al. New insights in the competition of polyphosphate-accumulating organisms and glycogen-accumulating organisms under glycogen accumulating metabolism with trace Poly-P using flow cytometry[J]. Chemical Engineering Journal, 2020, 385: 123915. doi: 10.1016/j.cej.2019.123915 |
[10] | WELLES L, LOPEZVAZQUEZ C M, HOOIJMANS C M, et al. Prevalence of ‘Candidatus Accumulibacter phosphatis’ type II under phosphate limiting conditions[J]. AMB Express, 2016, 6(1): 44. doi: 10.1186/s13568-016-0214-z |
[11] | 中华人民共和国国家卫生和计划生育委员会. 食品中丙酸钠、丙酸钙的测定: GB 5009.120-2016[S]. 北京: 中国标准出版社, 2016. |
[12] | 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
[13] | OEHMEN A, KELLER L B, ZENG R J, et al. Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J]. Journal of Chromatography A, 2005, 1070(1/2): 131-136. |
[14] | 王景峰, 王暄, 季民, 等. 聚糖菌颗粒污泥基于胞内储存物质的同步硝化反硝化[J]. 环境科学, 2006, 27(3): 473-477. doi: 10.3321/j.issn:0250-3301.2006.03.014 |
[15] | ZHANG M, WANG Y, FAN Y, et al. Bioaugmentation of low C/N ratio wastewater: Effect of acetate and propionate on nutrient removal, substrate transformation, and microbial community behavior[J]. Bioresource Technology, 2019, 306: 122465. |
[16] | JIANG Y, CHEN Y. The effects of the ratio of propionate to acetate on the transformation and composition of polyhydroxyalkanoates with enriched cultures of glycogen-accumulating organisms[J]. Environmental Technology, 2009, 30(3): 241-249. doi: 10.1080/09593330802536347 |
[17] | SMOLDERS G J, MEIJ J V D, VAN LOOSDRECHT M C M, et al. Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pH influence[J]. Biotechnology and Bioengineering, 2010, 43(6): 461-470. |
[18] | ZENG R, YUAN Z, VAN LOOSDRECHT M C M, et al. Proposed modifications to metabolic model for glycogen-accumulating organisms under anaerobic conditions[J]. Biotechnology and Bioengineering, 2002, 80(3): 277-279. doi: 10.1002/bit.10370 |
[19] | ACEVEDO B, OEHMEN A, CARVALHO G, et al. Metabolic shift of polyphosphate- accumulating organisms with different levels of polyphosphate storage[J]. Water Research, 2012, 46(6): 1889-1900. doi: 10.1016/j.watres.2012.01.003 |
[20] | MCILROY S J, ALBERTSEN M, ANDRESEN E K, et al. ‘Candidatus Competibacter’-lineage genomes retrieved from metagenomes reveal functional metabolic diversity[J]. The ISME Journal, 2014, 8(3): 613-624. doi: 10.1038/ismej.2013.162 |
[21] | RUBIO-RINCON F J, LOPEZ-VAZQUEZ C M, WELLES L, et al. Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes[J]. Water Research, 2017, 120: 156-164. doi: 10.1016/j.watres.2017.05.001 |
[22] | CARLOS M, LOPEZ-VAZQUEZ, CHRISTINE M, et al. Temperature effects on glycogen accumulating organisms[J]. Water Research, 2009, 43(11): 2852-2864. doi: 10.1016/j.watres.2009.03.038 |
[23] | MADS A, MCILROY S J, MIKKEL S B, et al. “Candidatus Propionivibrio aalborgensis”: A novel glycogen accumulating organism abundant in full-scale enhanced biological phosphorus removal plants[J]. Frontiers in Microbiology, 2016, 7: 1033. |
[24] | LIU M, YAO B, CONG S, et al. Optimization of wastewater phosphorus removal in winter temperatures using an anaerobic-critical aerobic strategy in a pilot-scale sequencing batch reactor[J]. Water, 2019, 12(1): 110. doi: 10.3390/w12010110 |
[25] | ONNISHAYDEN A, SRINIVASAN V, TOOKER N B, et al. Survey of full-scale sidestream enhanced biological phosphorus removal (S2EBPR) systems and comparison with conventional EBPRs in North America: Process stability, kinetics, and microbial populations[J]. Water Environment Research, 2020, 92(3): 403-417. doi: 10.1002/wer.1198 |
[26] | SELVARAJAN R, SIBANDA T, VENKATACHALAM S, et al. Industrial wastewaters harbor a unique diversity of bacterial communities revealed by high-throughput amplicon analysis[J]. Annals of Microbiology, 2018, 68(7): 445-458. doi: 10.1007/s13213-018-1349-8 |
[27] | CARVALHO V C, FREITAS E B, SILVA P J, et al. The impact of operational strategies on the performance of a photo-EBPR system[J]. Water Research, 2018, 129: 190-198. doi: 10.1016/j.watres.2017.11.010 |
[28] | CARVALHO V C, FREITAS E B, FRADINHO J C, et al. The effect of seed sludge on the selection of a photo-EBPR system[J]. New Biotechnology, 2019, 49: 112-119. doi: 10.1016/j.nbt.2018.10.003 |
[29] | TU Y J, SCHULER A J. Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater[J]. Environmental Science & Technology, 2013, 47(8): 3816-3824. |
[30] | 王少坡, 李柱, 赵乐丹, 等. 长期低聚磷条件对AO-SBR系统Accumulibacter代谢特性的影响[J]. 环境科学, 2019, 40(5): 337-344. |
[31] | ACEVEDO B, BORRAS L, OEHMEN A, et al. Modelling the metabolic shift of polyphosphate-accumulating organisms[J]. Water Research, 2014, 65: 235-244. doi: 10.1016/j.watres.2014.07.028 |
[32] | 樊龙江, 吴三玲, 邱杰, 等. 生物信息学[M]. 杭州: 浙江大学出版社, 2017: 309-310. |