北京林业大学,水体污染源控制技术北京市重点实验室,污染水体源控制与生态修复技术北京市高等学校工程研究中心,北京 100083
Engineering Research Center for Water Pollution Source Control and Eco-Remediation, Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
采用含有不同氮源的SBR进行为期220 d的反硝化型厌氧甲烷氧化(DAMO)微生物富集,研究单一氮源和多氮源对DAMO富集的影响,并用高通量测序对含有不同氮源的反应器内微生物群落结构进行了分析。结果表明,单一氮源(
,这说明多氮源比单一氮源更适合富集DAMO微生物。微生物群落结构分析结果表明,多氮源反应器中厌氧氨氧化细菌和DAMO古菌相对丰度(0.56%和0.03%)比单一氮源反应器中更高(0.3%和0.02%)。采用厌氧小瓶实验对工艺参数优化,结果确定DAMO反应的最适pH为6~7;最适温度为35 ℃;当甲烷分压大于75 kPa时,DAMO反应速率不再受甲烷分压的限制。
In this study, different nitrogen sources was used to enrich the denitrifying anaerobic methane oxidation (DAMO) microbial in SBR for 220 days and the influences of single nitrogen source and multiple nitrogen source on DAMO enrichment were investigated. Microbial community structure in the different SBRs was analyzed by high-throughput sequencing. The experimental results showed that the final nitrate removal rates in the SBRs with a single nitrogen source (
, respectively, indicating that multi-nitrogen source were more suitable for DAMO enrichment than single nitrogen source. High-throughput sequencing results showed that the relative abundances of anammox bacteria and DAMO archaea in the SBR with a multi-nitrogen source (0.56%, 0.03%) were higher than those in the SBR with a single nitrogen source (0.3%, 0.02%), respectively. The anaerobic vial test was used to optimize the process parameters, the optimal pH and temperatureo f DAMO reaction were 6~7 and 35 ℃, respectively. When the partial pressure of methane increased to 75 kPa, the DAMO reaction rate was no longer restricted by the partial pressure of methane.
.
Enrichment effect of the reactor during 0~80 days
SBR-1和SBR-2中不同氮素浓度的变化
Variations of concentration of different nitrogen species in SBR-1 and SBR-2
conversion rate in SBR-1 and SBR-2
Relative abundance distributions of bacteria community in SBR-1 and SBR-2
Relative abundance distributions of archaea at the genus level in SBR-1 and SBR-2
Effect of temperature on DAMO
Effect of partial pressure of methane on DAMO
[1] | SARA L, CALDWELL, JAMES R, et al. Anaerobic oxidation of methane: Mechanisms, bioenergetics, and the ecology of associated microorganisms[J]. Environmental Science & Technology, 2008, 42(18): 6791-6799. |
[2] | REN Y, NGO H H, GUO W, et al. New perspectives on microbial communities and biological nitrogen removal processes in wastewater treatment systems[J]. Bioresource Technology, 2019, 297: 122491. |
[3] | WANG D, WANG Y, LIU Y, et al. Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment plants?[J]. Bioresource Technology, 2017, 234: 456-465. doi: 10.1016/j.biortech.2017.02.059 |
[4] | 翟俊, 李媛媛, 何孟狄, 等. 淡水系统中甲烷厌氧氧化古菌的研究进展[J]. 环境工程学报, 2019, 13(5): 1009-1020. doi: 10.12030/j.cjee.201812098 |
[5] | CAI C, LEU A, XIE G, et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction[J]. The ISME Journal, 2018, 12(8): 1929-1939. doi: 10.1038/s41396-018-0109-x |
[6] | LEU A, CAI C, MCILROY S, et al. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae[J]. The ISME Journal, 2020, 14(4): 1030-1041. doi: 10.1038/s41396-020-0590-x |
[7] | HE C, ZHANG B, YAN W, et al. Enhanced microbial chromate reduction using hydrogen and methane as joint electron donors[J]. Journal of Hazardous Materials, 2020, 395: 122684. doi: 10.1016/j.jhazmat.2020.122684 |
[8] | ZHANG B, JIANG Y, ZUO K, et al. Microbial vanadate and nitrate reductions coupled with anaerobic methane oxidation in groundwater[J]. Journal of Hazardous Materials, 2020, 382: 121228. doi: 10.1016/j.jhazmat.2019.121228 |
[9] | XIE G, CAI C, HU S, et al. Complete nitrogen removal from synthetic anaerobic sludge digestion liquor through integrating anammox and denitrifying anaerobic methane oxidation in a membrane biofilm reactor[J]. Environmental Science & Technology, 2017, 51(2): 819-827. |
[10] | ALLEGUE T, ARIAS A, FERNANDEZ N, et al. Enrichment of nitrite-dependent anaerobic methane oxidizing bacteria in a membrane bioreactor[J]. Chemical Engineering Journal, 2018, 347: 721-730. doi: 10.1016/j.cej.2018.04.134 |
[11] | ETTWIG K F, BUTLER M K, LE P D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. Nature, 2010, 464(7288): 543-548. doi: 10.1038/nature08883 |
[12] | RAGHOEBARSING A A, POL A, KT V D P S, et al. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 2006, 440(7086): 918-921. doi: 10.1038/nature04617 |
[13] | 蔡朝阳, 何崭飞, 胡宝兰. 甲烷氧化菌分类及代谢途径研究进展[J]. 浙江大学学报(农业与生命科学版), 2016, 42(3): 273-281. |
[14] | 陈颖. 厌氧甲烷氧化微生物代谢分子机制及其潜在参与矿物形成机理的研究[D]. 上海: 上海交通大学, 2014. |
[15] | 沈李东, 胡宝兰, 郑平. 甲烷厌氧氧化微生物的研究进展[J]. 土壤学报, 2011, 48(3): 619-628. doi: 10.11766/trxb201004050120 |
[16] | HU B, SHEN L, ZHENG P, et al. Distribution and diversity of anaerobic ammonium-oxidizing bacteria in the sediments of the Qiantang River[J]. Environmental Microbiology Reports, 2012, 4(5): 540-547. doi: 10.1111/j.1758-2229.2012.00360.x |
[17] | HU B, SHEN L, LIAN X, et al. Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(12): 4495-4500. doi: 10.1073/pnas.1318393111 |
[18] | SHEN L, WU H, GAO Z, et al. Presence of diverse Candidatus Methylomirabilis oxyfera-like bacteria of NC10 phylum in agricultural soils[J]. Journal of Applied Microbiology, 2016, 120(6): 1552-1560. doi: 10.1111/jam.13119 |
[19] | SHEN L, WU H, LIU X, et al. Cooccurrence and potential role of nitrite- and nitrate-dependent methanotrophs in freshwater marsh sediments[J]. Water Research, 2017, 123: 162-172. doi: 10.1016/j.watres.2017.06.075 |
[20] | WU M, VAN A, VAN D, et al. Co-localization of particulate methane monooxygenase and cd1 nitrite reductase in the denitrifying methanotroph ‘Candidatus Methylomirabilis oxyfera’[J]. FEMS Microbiology Letters, 2012, 334(1): 49-56. doi: 10.1111/j.1574-6968.2012.02615.x |
[21] | WU M, VAN T, WILLEMS M J R, et al. Ultrastructure of the denitrifying methanotroph “Candidatus methylomirabilis oxyfera,” a novel polygon-shaped bacterium[J]. Journal of Bacteriology, 2012, 194(2): 284-291. doi: 10.1128/JB.05816-11 |
[22] | LI W, LU P, CHAI F, et al. Long-term nitrate removal through methane-dependent denitrification microorganisms in sequencing batch reactors fed with only nitrate and methane[J]. AMB Express, 2018, 8: 108. doi: 10.1186/s13568-018-0637-9 |
[23] | 赵荣, 朱雷, 吴箐, 等. 亚硝酸盐型甲烷厌氧氧化过程影响因素研究[J]. 环境科学学报, 2017, 37(1): 178-184. |
[24] | DING J, FU L, DING Z, et al. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy ?eld[J]. Applied Microbiology and Biotechnology, 2016, 100(1): 439-446. doi: 10.1007/s00253-015-6986-2 |
[25] | ETTWIG K F, VAN A T A, DE P K V, et al. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum[J]. Applied and Environmental Microbiology, 2009, 75(11): 3656-3662. doi: 10.1128/AEM.00067-09 |
[26] | FU L, DING J, LU Y, et al. Nitrogen source effects on the denitrifying anaerobic methane oxidation culture and anaerobic ammonium oxidation bacteria enrichment process[J]. Applied Microbiology and Biotechnology, 2017, 101(9): 3895-3906. doi: 10.1007/s00253-017-8163-2 |
[27] | HU S, ZENG R J, BUROW L C, et al. Enrichment of denitrifying anaerobic methane oxidizing microorganisms[J]. Environmental Microbiology Reports, 2009, 1(5): 377-384. doi: 10.1111/j.1758-2229.2009.00083.x |
[28] | 耿莎. 亚硝酸盐型甲烷厌氧氧化菌富集培养及优化研究[D]. 杭州: 浙江大学, 2015. |
[29] | 薛怡亭. MBR深度处理垃圾焚烧渗沥液的效能与膜污染控制研究[D]. 北京: 北京林业大学, 2015. |
[30] | 吴箐. 反硝化型甲烷厌氧氧化的功能菌群富集及过程强化研究[D]. 北京: 清华大学, 2018. |
[31] | ZHU G, ZHOU L, WANG Y, et al. Biogeographical distribution of denitrifying anaerobic methane oxidizing bacteria in Chinese wetland ecosystems[J]. Environmental Microbiology Reports, 2015, 7(1): 128-138. doi: 10.1111/1758-2229.12214 |
[32] | ZHU B, DIJK G, FRITZ C, et al. Anaerobic oxidization of methane in a minerotrophic peatland: Enrichment of nitrite-dependent methane-oxidizing bacteria[J]. Applied & Environmental Microbiology, 2012, 78(24): 8657-8665. |
[33] | HE Z, GENG S, PAN Y, et al. Improvement of the trace metal composition of medium for nitrite-dependent anaerobic methane oxidation bacteria: Iron (II) and copper (II) make a difference[J]. Water Research, 2015, 85(15): 235-243. |
[34] | 何崭飞. 亚硝酸盐型甲烷厌氧氧化细菌培养条件优化及其生态功能[D]. 杭州: 浙江大学, 2016. |
[35] | LIU T, LIM Z, CHEN H, et al. Temperature-tolerated mainstream nitrogen removal by anammox and nitrite/nitrate-dependent anaerobic methane oxidation in a membrane biofilm reactor[J]. Environmental Science & Technology, 2020, 54(5): 3012-3021. |
[36] | 何崭飞, 蔡琛, 沈李东, 等. DAMO过程中甲烷传质模型的建立与验证[J]. 化工学报, 2012, 63(6): 1836-1841. doi: 10.3969/j.issn.0438-1157.2012.06.026 |