西安科技大学地质与环境学院,西安 710054
College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
为解决非均相类芬顿法催化剂分离回收困难的问题,采用共沉淀法制备了催化剂聚铁硅盐掺杂羟基氧化铁(PFSC-FeOOH)。利用X射线衍射(XRD)、扫描电子显微镜(SEM)以及傅里叶变换红外光谱(FT-IR)等技术手段对催化剂进行了表征。以苯酚为目标污染物,分别考察了催化剂用量、H
。以上研究结果可为实际有机废水的处理提供参考。
To solve the problem of difficulty in the separation and recycle of heterogeneous Fenton-like catalyst, polysilicate ferric doped iron oxyhydroxides (PFSC-FeOOH) was prepared by the co-precipitation method. The catalyst was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR). Using phenol as the target pollutant, the effects of PFSC-FeOOH and H
dosages, temperature, the initial concentration of phenol solution and pH on phenol removal by Fenton-like oxidation with PFSC-FeOOH catalyzing H
were investigated, and the reaction mechanism was explored. The results showed that the phenol degradation efficiency was 90.48% at the reaction time of 40 min, pH of 3, the H
and room temperature ((25±1) ℃). The reaction process conforms to the Quasi-first order reaction, and the rate constant was 0.0415 min
. The hydroxyl radical (·OH) played a major role in the reaction process, and the molecular structure of phenol was destroyed. After reaction, the catalytic was settled and separated easily with the sedimentation speed of 0.1 m·min
. The Fenton-like oxidation with PFSC-FeOOH as catalyst can effectively treat phenol wastewater which provides some references for degradation of organic wastewater.
.
FeOOH和PFSC-FeOOH的XRD图
XRD patterns of FeOOH and PFSC-FeOOH
FeOOH和PFSC-FeOOH的SEM图
SEM images of FeOOH and PFSC-FeOOH
FeOOH和PFSC-FeOOH的FTIR谱图
FTIR spectra of FeOOH and PFSC-FeOOH
Evaluation of catalyst activity
Effect of pH on phenol removal
Effect of hydrogen peroxide dosage on phenol removal
PFSC-FeOOH投加量对苯酚去除的影响
Effect of PFSC-FeOOH dosage on phenol removal
Effect of phenol concentration on phenol removal
Effect of reaction temperature on phenol removal
Effect of quencher on phenol removal
UV absorption spectra of phenol oxidative degradation
[1] | LEAL T W, LOUREN L A, BRANDíS L, et al. Low-cost iron-doped catalyst for phenol degradation by heterogeneous Fenton[J]. Journal of Hazardous Materials, 2018, 359(18): 96-103. |
[2] | 董子萱, 廉新颖, 姜永海, 等. 水羟锰矿去除地下水中苯酚的影响因素及机理[J]. 环境工程学报, 2017, 11(8): 4481-4488. doi: 10.12030/j.cjee.201607181 |
[3] | WU H H, DOU X W, DENGD Y, et al. Decolourization of the azo dye orange G in aqueous solution via a heterogeneous Fenton-like reaction catalysed by goethite[J]. Environmental Technology, 2012, 33(14): 255-261. |
[4] | 王成, 徐灿灿, 刘锐, 等. Fe0还原、芬顿氧化及其耦合技术去除染料厂剩余污泥中的AOX[J]. 环境工程学报, 2017, 11(9): 5227-5232. doi: 10.12030/j.cjee.201609048 |
[5] | KUMAR V, PANDEY N, DHARMADHIKARI S, et al. Degradation of mixed dye via heterogeneous Fenton process: Studies of calcination, toxicity evaluation and kinetics[J]. Water Environment Research, 2019, 92(2): 211-221. |
[6] | 邓翠萍, 谢裕畴, 汪文思, 等. 磁性还原氧化石墨烯负载Fe0对罗丹明B的类芬顿降解[J]. 环境工程学报, 2017, 11(6): 3499-3506. doi: 10.12030/j.cjee.201603138 |
[7] | ENRIC B, SERGI G S. Benchmarking recent advances and innovative technology approaches of Fenton, photo-Fenton, electro-Fenton, and related processes: A review on the relevance of phenol as model molecule[J]. Separation and Purification Technology, 2020, 237: 116337-116342. |
[8] | 高聪, 全燮, 陈硕. Cu掺杂MIL-88B-Fe活化双氧水降解有机污染物性能研究[J]. 大连理工大学学报, 2019, 59(1): 1-7. doi: 10.7511/dllgxb201901001 |
[9] | LUO L, DAI C, ZHANG A, et al. A facile strategy for enhancing FeCu bimetallic promotion for catalytic phenol oxidation[J]. Catalysis Science & Technology, 2015, 5(6): 3159-3165. |
[10] | ZUBIR N A, YACOU C, MOTUZAS J, et al. The sacrificial role of graphene oxide in stabilising Fenton-like catalyst GO-Fe3O4[J]. Chemical Communications, 2015, 51(45): 169-174. |
[11] | 仇恩容. 羟基氧化铁复合物去除饮用水中铁锰试验研究[D]. 成都: 西南交通大学, 2016. |
[12] | 常洪铭, 易筱筠, 韦朝海. FeOOH对采矿废水中重金属的吸附[J]. 环境工程学报, 2016, 10(9): 4956-4960. doi: 10.12030/j.cjee.201504125 |
[13] | 张丽清, 刘志国, 周华锋, 等. 酸法制羟基氧化铁催化降解甲基橙研究[J]. 中南大学学报(自然科学版), 2015, 46(2): 416-420. doi: 10.11817/j.issn.1672-7207.2015.02.006 |
[14] | WEI Y X, DING A M, DONG L, et al. Characterisation and coagulation performance of an inorganic coagulant: Poly-magnesium-silicate-chloride in treatment of simulated dyeing wastewater[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470(4): 137-141. |
[15] | 刘玥, 陈忠林, 杨磊, 等. 聚合硅酸铁催化臭氧氧化硝基氯苯的效能[J]. 哈尔滨工业大学学报, 2010, 42(6): 914-918. doi: 10.11918/j.issn.0367-6234.2010.06.018 |
[16] | 中华人民共和国国家环境保护部. 水质挥发酚的测定4-氨基安替比林分光光度法: HJ 503-2009[S]. 2009-02-10. |
[17] | 杨金梅, 吕建波, 李莞璐, 等. 壳聚糖载纳米羟基氧化铁对水中磷的吸附[J]. 环境工程学报, 2018, 12(5): 1286-1294. doi: 10.12030/j.cjee.201710002 |
[18] | OTTE K, SCHMAHL W W, PENTCHEVA R, et al. Study of arsenate adsorption on FeOOH surfaces: Evidence for competing binding mechanisms[J]. Journal of Physical Chemistry C, 2013, 117(30): 15571-15582. doi: 10.1021/jp400649m |
[19] | 苗笑增, 戴慧旺, 陈建新, 等. 草酸根对α-FeOOH多相UV-Fenton催化能力的增效实验[J]. 环境科学, 2018, 39(3): 1202-1211. |
[20] | 许俊鸽, 李云琴, 黄华山, 等. 三维花状结构α-FeOOH协同H2O2可见光催化降解双氯芬酸钠[J]. 环境科学, 2015, 36(6): 2122-2128. |
[21] | ANTOINE T D, SAMUEL L, GEORGES L, et al. Non-thermal plasma synthesis of sea-urchin like α-FeOOH for the catalytic oxidation of orange II in aqueous solution[J]. Applied Catalysis B: Environmental, 2015, 176-177(10): 99-109. |
[22] | QIAN X, REN M, ZHU Y, et al. Visible light assisted heterogeneous Fenton-like degradation of organic pollutant via α-FeOOH/mesoporous carbon composites[J]. Environmental Science & Technology, 2017, 51(7): 3993-4000. |
[23] | 蒋胜韬, 祝建中, 管玉江, 等. Si-FeOOH/H2O2类芬顿降解盐酸四环素废水的效能及其机理[J]. 化工学报, 2015, 66(10): 4244-4251. |
[24] | 王万林. 我国复合型无机高分子絮凝剂的研究及应用进展[J]. 工业水处理, 2008, 28(4): 1-5. doi: 10.3969/j.issn.1005-829X.2008.04.001 |
[25] | 刘玥, 龚为进. 聚铁硅盐掺杂羟基氧化铁催化剂的制备方法及其应用201410099599.9[P]. 2014-07-23. |
[26] | TANG B H, ZHAO J T, JIAO Y, et al. Cucurbit uril promoted Fenton oxidation by modulating the redox property of catalysts[J]. Chemical Communications, 2019, 55(94): 14127-14130. doi: 10.1039/C9CC06877E |
[27] | LAIJU A R, SIVASANKAR T, NIDHEESH P V. Iron-loaded mangosteen as a heterogeneous Fenton catalyst for the treatment oflandfill leachate[J]. Environmental Science and Pollution Research, 2014, 21(18): 10900-10907. doi: 10.1007/s11356-014-2883-y |
[28] | 李阳, 王芬, 于雷, 等. 催化芬顿氧化处理苯酚废水[J]. 环境工程学报, 2017, 11(1): 267-272. doi: 10.12030/j.cjee.201509101 |
[29] | JI X X, WANG H F, HU P J. First principles study of Fenton reaction catalyzed by FeOCl: Reaction mechanism and location of active site[J]. Rare Metals, 2019, 38(8): 783-792. doi: 10.1007/s12598-018-1140-9 |
[30] | DAI F, FAN X R, GUNNAR R S, et al. Experimental and density functional theoretical study of the effects of Fenton’s reaction on the degradation of bisphenol A in a high voltage plasma reactor[J]. Journal of Hazardous Materials, 2016, 308(5): 419-429. |
[31] | TONY M A, MANSOUR S A, TAYEB A M, et al. Use of a Fenton-likeprocess based on nano-haematite to treat synthetic wastewater contaminated by phenol: Process investigation and statistical optimization[J]. Arabian Journal for Science & Engineering, 2018, 43(5): 2227-2235. |
[32] | SARMENTO A P, BORGES A C, DEMATOS A T, et al. Phenol degradation by Fenton-like process[J]. Environmental Science and Pollution Research, 2016, 23(18): 18429-18438. doi: 10.1007/s11356-016-6835-6 |