大连理工大学能源与动力学院,大连 116024
School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
逆电渗析反应器(REDR)可将工作溶液的浓差能转换为有机物降解能。为了验证这一能量转换过程,对由溶液浓差能驱动的REDR阴/阳极独立环路降解废水中苯酚的情况进行了研究。采用单因素分析法,探讨了REDR阴/阳电极独立环路内模拟苯酚废水组分及操作参数变化对苯酚降解率的影响。结果表明,REDR阴/阳极各环路均可有效降解废水中的苯酚。在实验设定的组分浓度和操作参数范围内,REDR输出电流密度为20 A·m
,总量各为500 mL的模拟苯酚废水,经80 min降解后,阴极和阳极环路内废水中的苯酚降解率分别达到98.1%和100%。
Reverse electrodialysis reactor (REDR) can convert the concentration gradient energy of the working fluids into the degradation energy of organic matters in wastewater. In order to verify this energy conversion process, the experiments on the degradation of phenol wastewater in the cathodic and anodic independent loops of REDR powered by concentration gradient energy were conducted. The single-factor analysis was adopted to evaluate the effects of changes in the components of simulated wastewater and operating parameters on phenol degradation. The results indicated that each cathodic and anodic independent loop of REDR could effectively degrade the phenol in the simulated wastewater. Within the ranges of imposed component concentration and operational parameters, at the REDR output current density of 20 A·m
, the optimum component concentration in simulated wastewater and the operating parameters, the maximum phenol removal rates in each degradation loop could reached 98.1% and 100% after 80 minute-oxidation reaction in 500 mL of 50 mg·L
phenol simulated wastewater, respectively.
.
溶液浓差能驱动的REDR氧化降解苯酚实验流程
Experimental system for phenol oxidation degradation by concentration gradient energy-powered REDR
溶液浓差能驱动的REDR氧化降解模拟苯酚废水实验系统照片
Photo of the experimental system for oxidation degradation of simulated phenol wastewaters by concentration gradient energy-powered REDR
concentration on degradation efficiency of simulated phenol wastewater at anode loop
电极液流速变化对阳极环路模拟苯酚降解率的影响
Effect of electrode solution flow rates on degradation efficiency of simulated phenol wastewater at anodic loop
concentration on degradation efficiency of simulated phenol wastewater at cathodic loop
Effect of pH on degradation efficiency of simulated phenol wastewater at cathodic loop
电极液流速变化对阴极环路模拟苯酚降解率的影响
Effect of electrode solution flow rates on degradation efficiency of simulated phenol wastewater at cathodic loop
曝气强度变化对阴极环路模拟苯酚降解率的影响
Effect of aeration intensity on degradation efficiency of simulated phenol wastewater at cathodic loop
REDR输出电流密度变化对阴/阳电极环路模拟苯酚降解率的影响
Effect of REDR output current density on degradation efficiency of simulated phenol wastewater at cathodic or anodic loops
Specification and characteristics of test instruments used in the experimental system
[1] | 廉拓, 杨年生, 于越, 等. 模拟苯酚废水高级氧化降解与测定初探[J]. 教育教学论坛, 2015(15): 229-230. doi: 10.3969/j.issn.1674-9324.2015.15.106 |
[2] | 刘佳琦. 含酚废水处理技术研究[J]. 环境科学与管理, 2018, 43(9): 111-114. doi: 10.3969/j.issn.1673-1212.2018.09.026 |
[3] | 国家环境保护总局. 污水综合排放标准: GB 8978-1996[S]. 北京: 中国标准出版社, 1996. |
[4] | WANG C T, CHOU W L, KUO Y M, et al. Paired removal of color and COD from textile dyeing wastewater by simultaneous anodic and indirect cathodic oxidation[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 16-22. |
[5] | 陈蕾, 王志鹏. 电化学高级氧化技术处理难降解有机废水的影响因素[J]. 应用化工, 2019, 48(1): 1-5. doi: 10.3969/j.issn.1671-3206.2019.01.001 |
[6] | 徐士鸣, 吴曦, 冷强. 一种利用低品位热能氧化降解有机废水的方法CN201711384061.2[P]. 2017-12-20. |
[7] | 徐士鸣, 徐志杰, 吴曦, 等. 溶液浓差能驱动的逆电渗析有机废水氧化降解机理研究[J]. 环境科学学报, 2018, 38(12): 4642-4651. |
[8] | 徐士鸣, 冷强, 吴曦, 等. 逆电渗析反应器阴、阳极联合降解酸性橙Ⅱ实验研究[J]. 环境科学学报, 2019, 39(7): 2163-2171. |
[9] | XU S, LENG Q, JIN D, et al. Experimental investigation on dye wastewater treatment with reverse electrodialysis reactor powered by salinity gradient energy[J]. Desalination, 2020, 49: 114541. |
[10] | KHAWAJI A D, KUTUBKHANAH I K, WIE J M. Advances in seawater desalination technologies[J]. Desalination, 2008, 221: 47-69. doi: 10.1016/j.desal.2007.01.067 |
[11] | XU S, XU L, WU X, et al. Air-gap diffusion distillation: Theory and experiment[J]. Desalination, 2019, 467: 64-78. doi: 10.1016/j.desal.2019.05.014 |
[12] | 王世昌, 解利昕, 李凭力. 海水淡化技术现状及各种淡化方法评述[J]. 化工进展, 2003, 22(10): 1081-1084. doi: 10.3321/j.issn:1000-6613.2003.10.011 |
[13] | D'ANGELO A. Reverse electrodialysis process for the production of chemicals and the treatment of contaminated wastewater[D]. Italy: Università degli Studi di Palermo, 2016. |
[14] | SCIALDONE O, D'ANGELO A, GALIA A. Energy generation and abatement of acid orange 7 in reverse electrodialysis cells using salinity gradients[J]. Journal of Electroanalytical Chemistry, 2015, 738: 61-68. doi: 10.1016/j.jelechem.2014.11.024 |
[15] | SCIALDONE O, D'ANGELO A, PASTORELLA G, et al. Electrochemical processes and apparatuses for the abatement of acid orange 7 in water[J]. Chemical Engineering Transactions, 2014, 41: 31-36. |
[16] | SCIALDONE O, D'ANGELO A, DE LUMè E, et al. Utilization of reverse electrodialysis processes for the abatement of pollutants in water[J]. Chemical Engineering Transactions, 2014, 41: 139-144. |
[17] | SCIALDONE O, D'ANGELO A, DE LUMè E, et al. Cathodic reduction of hexavalent chromium coupled with electricity generation achieved by reverse-electrodialysis processes using salinity gradients[J]. Electrochimica Acta, 2014, 137: 258-265. doi: 10.1016/j.electacta.2014.06.007 |
[18] | ZHOU Y, ZHAO K, HU C, et al. Electrochemical oxidation of ammonia accompanied with electricity generation based on reverse electrodialysis[J]. Electrochimica Acta, 2018, 269: 128-135. doi: 10.1016/j.electacta.2018.02.136 |
[19] | TEDESCO M, BRAUNS E, CIPOLLINA A, et al. Reverse Electrodialysis with saline waters and concentrated brines: A laboratory investigation towards technology scale-up[J]. Journal of Membrane Science, 2015, 492: 9-20. doi: 10.1016/j.memsci.2015.05.020 |
[20] | HU J, XU S, WU X, et al. Multi-stage reverse electrodialysis: Strategies to harvest salinity gradient energy[J]. Energy Conversion and Management, 2019, 183: 803-815. doi: 10.1016/j.enconman.2018.11.032 |
[21] | HU J, XU S, WU X, et al. Exergy analysis for the multi-effect distillation-reverse electrodialysis heat engine[J]. Desalination, 2019, 467: 158-169. doi: 10.1016/j.desal.2019.06.007 |
[22] | TEDESCO M, HAMELERS H V M, BIESHEUVEL P M. Nernst-Planck transport theory for (reverse) electrodialysis: I. Effect of co-ion transport through the membranes[J]. Journal of Membrane Science, 2016, 510: 370-381. |
[23] | MOYA A A. Numerical simulation of ionic transport processes through bilayer ion-exchange membranes in reverse electrodialysis stacks[J]. Journal of Membrane Science, 2017, 524: 400-408. doi: 10.1016/j.memsci.2016.11.051 |
[24] | MOYA A A. A numerical comparison of optimal load and internal resistances in ion-exchange membrane systems under reverse electrodialysis conditions[J]. Desalination, 2016, 392: 25-33. doi: 10.1016/j.desal.2016.04.016 |
[25] | PANIZZA M, CERISOLA G. Direct and mediated anodic oxidation of organic pollutants[J]. Chemical Reviews, 2009, 109(12): 6541-6569. doi: 10.1021/cr9001319 |
[26] | MARTíNEZ-HUITLE C A, RODRIGO M A, SIRéS I, et al. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: A critical review[J]. Chemical Reviews, 2015, 115(24): 13362-13407. doi: 10.1021/acs.chemrev.5b00361 |
[27] | MARTíNEZ-HUITLE C A, FERRO S. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes[J]. Chemical Society Reviews, 2006, 35(12): 1324-1340. doi: 10.1039/B517632H |
[28] | FENG Y, YANG L, LIU J, et al. Electrochemical technologies for wastewater treatment and resource reclamation[J]. Environmental Science Water Research & Technology, 2016, 2(5): 800-831. |
[29] | ZHANG C, HE D, MA J, et al. Active chlorine mediated ammonia oxidation revisited: Reaction mechanism, kinetic modelling and implications[J]. Water Research, 2018, 145: 220-230. doi: 10.1016/j.watres.2018.08.025 |
[30] | BABUPONNUSAMI A, MUTHUKUMAR K. Advanced oxidation of phenol: A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes[J]. Chemical Engineering Journal, 2012, 183: 1-9. doi: 10.1016/j.cej.2011.12.010 |
[31] | 林恒, 张晖. 电-Fenton及类电-Fenton技术处理水中有机污染物[J]. 化学进展, 2015, 34(8): 1123-1132. |
[32] | BRILLAS E, SIRE′S I, OTURAN M A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry[J]. Chemical Reviews, 2009, 109(12): 6570. doi: 10.1021/cr900136g |
[33] | PIMENTEL M, OTURAN N, DEZOTTI M, et al. Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode[J]. Science Direct, 2008, 83: 140-149. |
[34] | 班福忱, 刘炯天, 程琳, 等. 阴极电芬顿法处理苯酚废水的研究[J]. 工业安全与环保, 2009, 35(9): 25-27. doi: 10.3969/j.issn.1001-425X.2009.09.011 |
[35] | PANIZZA M, CERISOLA G. Electrochemical oxidation of 2-naphthol with in situ electrogenerated active chlorine[J]. Electrochimica Acta, 2003, 48(11): 1515-1519. doi: 10.1016/S0013-4686(03)00028-8 |
[36] | WANG C T, HU J L, CHOU W L, et al. Removal of color from real dyeing wastewater by electro-Fenton technology using a three-dimensional graphite cathode[J]. Journal of Hazardous Materials, 2008, 152(2): 601-606. doi: 10.1016/j.jhazmat.2007.07.023 |
[37] | ROSALES E, PAZOS M, LONGO M A, et al. Electro-Fenton decoloration of dyes in a continuous reactor: A promising technology in colored wastewater treatment[J]. Chemical Engineering Journal, 2009, 155: 62-67. doi: 10.1016/j.cej.2009.06.028 |
[38] | 徐士鸣, 张凯, 吴曦, 等. 电流与浓差对逆电渗析电堆内质量传递的影响[J]. 化工学报, 2018, 69(10): 76-85. |
[39] | 徐士鸣, 刘志强, 吴曦, 等. 溶液浓差能驱动的逆电渗析反应器制氢实验研究[J]. 化工学报, 2020, 71(5): 2283-2291. |