西安工程大学环境与化学工程学院,西安 710600
College of Environmental and Chemical Engineering, Xi′an Polytechnic University, Xi′an 710600, China
针对双氰胺甲醛(DDF)在对阴离子染料废水絮凝脱色中形成的絮体数量少、体积小,导致沉降性差、废水出水浊度较高的问题,以聚丙烯腈纤维(PAN)为基体接枝DDF,增大其分子质量,制得阳离子有机高分子絮凝剂PAN-DDF,黏度法测得其分子质量为1 086 718 Da,聚合度为4 347。考察了PAN-DDF投加量、沉淀时间、pH、温度对单一组分和混合组分下刚果红、酸性兰9、活性嫩黄K-6G3种染料絮凝脱色效果的影响,并使用扫描电镜和红外光谱对其表征。结果表明:在30 ℃下,在200 mL染料浓度为20 mg·L
,pH=10的模拟废水中投加20 mg PAN-DDF,沉淀30 min,脱色效果最佳。其对单一组分的刚果红、酸性兰9、活性嫩黄K-6G的脱色率分别为93.31%、84.16%、83.63%,上清液的浊度分别为1.79、2.23、1.39 NTU;对混合组分中3种染料的脱色率分别为81.74%、76.24%、62.57%,上清液的浊度为2.79 NTU。通过对比PAN接枝DDF前后扫描电镜照片,发现原光滑表面变粗糙,并附着大量颗粒物。红外光谱表征结果表明,PAN-DDF分子结构上含有—NH
=C等多种活性基团。
Aiming at the small quantity and volume of flocs formed by dicyandiamide formaldehyde (DDF) in flocculation and decolorization of anionic dye wastewater, resulting in poor sedimentation and high turbidity of wastewater effluent, the cationic organic polymer flocculant PAN-DDF was prepared by using polyacrylonitrile fiber (PAN) as matrix grafting DDF, increasing its molecular weight. The molecular weight measured by viscosity method was 1 086 718 Da, and the degree of polymerization was 4 347. The effects of PAN-DDF dosage, precipitation time, pH, and temperature on the flocculation and decolorization of single or mixing dyes of congo red, acid blue 9, and active yellow K-6G were investigated, respectively. The scanning electron microscopy and infrared spectroscopy were used to characterize the flocculants. The results showed that at 30 ℃, 20 mg PAN-DDF was added to 200 mL of simulated wastewater with a dye concentration of 20 mg·L
and pH=10, and the decolorization effect was the best after precipitation for 30 minutes. The decolorization rates of single Congo red, acid blue 9, or active bright yellow K-6G were 93.31%, 84.16% or 83.63%, respectively, and the turbidities of the supernatant were 1.79, 2.23, 1.39 NTU. For the mixed dyes, the decolorization rates of the three dyes were 81.74%, 76.24% and 62.57%, respectively, and the turbidity of the supernatant was 2.79 NTU. As observed by scanning electron images of PAN-DDF and DDF, it was found that the original smooth surface became rough and attached a lot of particles. The infrared spectrum showed that PAN-DDF molecular structure contained —NH
=C and other active groups.
.
Dye molecular structure
Scanning electron images of powder sample before PAN grafting DDF
Scanning electron images of powder sample after PAN grafting DDF
Infrared spectra of powder samples before and after PAN grafting DDF
PAN-DDF投加量对模拟废水脱色效果的影响
Effect of PAN-DDF dosage on the decolorization effect of simulated wastewater
Effect of settling time on decolorization effect of simulated wastewater
Effect of pH on the decolorization effect of simulated wastewater
Effect of temperature on the decolorization effect of simulated wastewater with single component
Effect of temperature on the decolorization effect of simulated wastewater with mixing components
[1] | GOLOB V, VINDER A, SIMONIC M. Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents[J]. Dyes and Pigments, 2005, 67(2): 93-97. doi: 10.1016/j.dyepig.2004.11.003 |
[2] | 刘路. 纺织印染废水处理技术研究现状及进展[J]. 上海工程技术大学学报, 2017, 31(2): 174-177. doi: 10.3969/j.issn.1009-444X.2017.02.016 |
[3] | 岳秀, 唐嘉丽, 于广平, 等. 双氧水协同生化法强化处理印染废水[J]. 环境科学, 2017, 38(9): 3769-3780. |
[4] | 韩志勇, 韩昆, 郝昊天, 等. 铜铁氧体法处理模拟染料废水[J]. 环境科学, 2018, 39(3): 1195-1201. |
[5] | XIA L, LI C, ZHOU S, et al. Utilization of waste leather powders for highly effective removal of dyes from water[J]. Polymers, 2019, 11(11): 1786. doi: 10.3390/polym11111786 |
[6] | SONG C, YU Y, SANG X. Synthesis and surface gel-adsorption effect of multidimensional cross-linking cationic cotton for enhancing purification of dyeing wastewater[J]. Journal of Chemical Technology and Biotechnology, 2019, 94(1): 120-127. doi: 10.1002/jctb.5752 |
[7] | 陈垂汉, 孙建洋, 李莹, 等. 印染污泥制备活性炭对亚甲基蓝的吸附[J]. 环境工程学报, 2018, 12(7): 1872-1878. doi: 10.12030/j.cjee.201710068 |
[8] | GU S, LIAN F, YAN K, et al. Application of polymeric ferric sulfate combined with cross-frequency magnetic field in the printing and dyeing wastewater treatment[J]. Water Science and Technology, 2019, 80(8): 1562-1570. doi: 10.2166/wst.2019.401 |
[9] | NUNEZ J, YEBER M, CISTERNAS N, et al. Application of electrocoagulation for the efficient pollutants removal to reuse the treated wastewater in the dyeing process of the textile industry[J]. Journal of Hazardous Materials, 2019, 371: 705-711. doi: 10.1016/j.jhazmat.2019.03.030 |
[10] | 石健, 万杨, 黄鑫, 等. 聚合铁钛混凝剂对印染废水的处理[J]. 环境工程学报, 2019, 13(5): 1021-1029. doi: 10.12030/j.cjee.201901137 |
[11] | XU H, YANG B, LIU Y, et al. Recent advances in anaerobic biological processes for textile printing and dyeing wastewater treatment: A mini-review[J]. World Journal of Microbiology & Biotechnology, 2018, 34(11): 165. |
[12] | YANG B, XU H, YANG S, et al. Treatment of industrial dyeing wastewater with a pilot-scale strengthened circulation anaerobic reactor[J]. Bioresource Technology, 2018, 264: 154-162. doi: 10.1016/j.biortech.2018.05.063 |
[13] | WENG C, TSAI K. Ultrasound and heat enhanced persulfate oxidation activated with Fe-0 aggregate for the decolorization of CI direct red 23[J]. Ultrasonics Sonochemistry, 2016, 29: 11-18. doi: 10.1016/j.ultsonch.2015.08.012 |
[14] | MU H, DING S, DENG L. A study of photocatalytic degradation of dyeing and printing wastewater by ZnO@zeolitic imidazolate framework (ZIF)-8[J]. Journal of the Society of Leather Technologists and Chemists, 2019, 103(5): 247-252. |
[15] | VERMA A K, DASH R R, BHUNIA P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters[J]. Journal of Environmental Management, 2012, 93(1): 154-168. |
[16] | 张洛红, 王文韬, 柴易达, 等. 有机阳离子型絮凝剂处理阴离子印染废水的研究进展[J]. 印染, 2019, 45(18): 51-55. |
[17] | LEE C S, ROBINSON J, CHONG M F. A review on application of flocculants in wastewater treatment[J]. Process Safety and Environmental Protection, 2014, 92(6): 489-508. doi: 10.1016/j.psep.2014.04.010 |
[18] | 李风亭, 陆雪非, 张冰如. 印染废水脱色方法[J]. 水处理技术, 2003, 29(1): 12-14. doi: 10.3969/j.issn.1000-3770.2003.01.004 |
[19] | WANG M, TIAN Y, ZHAO X, et al. The application of an efficient modified decolorizer in coagulation treatment of high color reclaimed water[J]. Water Science and Technology, 2018, 77(9): 2190-2203. doi: 10.2166/wst.2018.133 |
[20] | 段圣亮, 颜诚, 李纪华, 等. 双氰胺-甲醛絮凝剂处理硝基酚类印染废水的脱色和COD去除效果研究[J]. 环境工程, 2012, 30(S2): 105-108. |
[21] | 耿仁勇, 吕雪川, 李国轲, 等. 双氰胺甲醛改性脱色剂的合成及在模拟染料废水中的应用[J]. 化工进展, 2016, 35(1): 308-313. |
[22] | 李鹏飞. 改性双氰胺甲醛聚合物的制备、应用及机理研究[D]. 青岛: 青岛科技大学, 2018. |
[23] | 陆伟东, 毕泳珊, 蔡浩筠, 等. 复合絮凝剂的制备及印染废水脱色试验研究[J]. 印染助剂, 2012, 29(6): 47-49. doi: 10.3969/j.issn.1004-0439.2012.06.012 |
[24] | 周勇, 张勇, 杨艳, 等. 尿素改性双氰胺-甲醛的制备及脱色效果[J]. 印染, 2016, 42(24): 16-20. |
[25] | CHERAGHALI R, MAGHSOUD Z. Enhanced modification technique for polyacrylonitrile UF membranes by direct hydrolysis in the immersion bath[J]. Journal of Applied Polymer Science, 2020, 137(16): 48583. doi: 10.1002/app.48583 |
[26] | LIU Y, XUE Y, JI H, et al. Kinetics of the cyclization and isomerization reactions in polyacrylonitrile based carbon fiber precursors during thermal-oxidative stabilization[J]. Journal of Applied Polymer Science, 2020, 137(24): 48819. doi: 10.1002/app.48819 |
[27] | VAZQUEZ-VELEZ E, LOPEZ-ZARATE L, MARTINEZ-VALENCIA H. Electrospinning of polyacrylonitrile nanofibers embedded with zerovalent iron and cerium oxide nanoparticles, as Cr(VI) adsorbents for water treatment[J]. Journal of Applied Polymer Science, 2020, 137(19): 48663. doi: 10.1002/app.48663 |
[28] | WEI H, SUO X, LU C, et al. A comparison of coagulation and gelation on the structures and stabilization behaviors of polyacrylonitrile fibers[J]. Journal of Applied Polymer science, 2020, 137(19): 48671. doi: 10.1002/app.48671 |
[29] | 张恒, 李鹏飞, 许磊, 等. 双氰胺甲醛缩聚物絮凝剂的制备[J]. 当代化工, 2016, 45(7): 1326-1328. doi: 10.3969/j.issn.1671-0460.2016.07.003 |
[30] | 田习菲. 醚化改性双氰胺-甲醛脱色絮凝剂的合成及应用[D]. 苏州: 苏州大学, 2014. |
[31] | 张文艺, 刘明元, 罗鑫, 等. 双氰胺-甲醛聚合物阳离子印染废水脱色剂的合成及其应用[J]. 过程工程学报, 2010, 10(6): 1217-1221. |
[32] | 李烨, 任海静, 栾兆坤. 采用双氰胺甲醛缩聚物混凝去除水中酸性红B染料的研究[J]. 环境工程学报, 2008, 2(3): 362-365. |
[33] | 马金华, 能子礼超, 徐园园, 等. 钢渣吸附去除藏蓝色和紫红色染料废水研究[J]. 能源与环保, 2020, 42(6): 111-115. |
[34] | 苏萌, 陶然, 杨扬, 等. 偶氮染料脱色菌Lysinibacillus sp. FS1的脱色性能[J]. 环境工程学报, 2015, 9(10): 4664-4672. doi: 10.12030/j.cjee.20151009 |
[35] | 赵宜江, 周守勇, 薛爱莲, 等. 采用盐泥对直接染料废水脱色处理的研究[J]. 环境工程学报, 2008, 2(3): 353-357. |
[36] | 项尚林, 余人同, 王庭慰, 等. 粘度法测定高聚物分子量实验的改进[J]. 实验科学与技术, 2009, 7(5): 37-38. |
[37] | 林丰. 双氰胺甲醛缩聚物类絮凝剂的发展与展望[J]. 工业水处理, 2004, 24(1): 1-4. doi: 10.3969/j.issn.1005-829X.2004.01.001 |
[38] | 邵青. 高效脱色絮凝剂脱色絮凝机理浅探及其应用[J]. 工业水处理, 2000, 20(2): 7-10. |
[39] | 余颖, 李莹, 庄源益, 等. 染料结构与其絮凝脱色效果关系的探讨[J]. 城市环境与城市生态, 2000, 13(1): 16-19. |
[40] | 孙志勇, 王爱民, 白妮, 等. CPAM复配膨润土处理刚果红废水的研究[J]. 非金属矿, 2016, 39(2): 35-36. doi: 10.3969/j.issn.1000-8098.2016.02.011 |
[41] | 刘剑锋, 陈羡琳, 刘明华, 等. 一种复合脱色剂在印染废水中的应用研究[J]. 化学研究与应用, 2010, 22(3): 397-400. doi: 10.3969/j.issn.1004-1656.2010.03.031 |