删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基质浓度对ABR-MBR短程反硝化除磷工艺效能的影响

本站小编 Free考研考试/2021-12-31

韦佳敏1,,
沈耀良2,,,
黄慧敏3,
蒋志云2,
刘文如2
1.江苏理工学院化学与环境工程学院,常州 213001
2.苏州科技大学环境科学与工程学院,苏州 215009
3.维尔利环保科技集团股份有限公司,常州 213125
作者简介: 韦佳敏(1993—),男,硕士,助教。研究方向:水污染控制与理论。E-mail:478223661@qq.com.
通讯作者: 沈耀良,ylshen@mail.usts.edu.cn ;

中图分类号: X52


Effect of substrate concentration on the efficiency of ABR-MBR partial denitrifying phosphorus removal process

WEI Jiamin1,,
SHEN Yaoliang2,,,
HUANG Huimin3,
JIANG Zhiyun2,
LIU Wenru2
1.School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
2.School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
3.WELLE Environmental Technology Group Co. Ltd., Changzhou 213125, China
Corresponding author: SHEN Yaoliang,ylshen@mail.usts.edu.cn ;

CLC number: X52

-->

摘要
HTML全文
(5)(1)
参考文献(19)
相关文章
施引文献
资源附件(0)
访问统计

摘要:以低C/N值生活污水为处理对象,重点考察了基质浓度对厌氧折流板反应器-膜生物反应器(ABR-MBR)系统短程反硝化除磷效能的影响。结果表明:控制C/N/P值不变,逐步提高进水基质浓度,在工况A、B、C和D下所对应的ABR容积负荷(VLR,以COD计)分别为1.02、1.53、2.04和2.55 kg·(m3·d)?1;在MBR反应器中,通过游离氨(FA)选择性抑制亚硝酸盐氧化菌(NOBs),使得氨氧化菌(AOBs)逐渐成为优势菌群,亚硝酸盐积累率(NAR)稳定在61.7%;通过逐步驯化DPBs对${\rm{NO}}_2^ - $-N的耐受能力,以实现不同微生物的协同作用,优化系统的稳定运行。在ABR容积负荷为2.55 kg·(m3·d)?1时,游离亚硝酸(FNA)为0.001 3 mg·L?1,对DPBs产生了严重抑制作用,吸磷效果降至最低。
关键词: 反硝化除磷/
基质浓度/
游离亚硝酸/
游离氨/
亚硝酸盐积累率

Abstract:The effect of substrate concentration on the efficiency of partial denitrifying phosphorus removal in an anaerobic baffled reactor-membrane bioreactor (ABR-MBR) system treating low C/N domestic wastewater was investigated. Results showed that at a constant C/N/P value, the gradual increase of the substrate concentration resulted in the ABR volume loading rates (VLR) as follows: 1.02, 1.53, 2.04 and 2.55 kg·(m3·d)?1, which corresponded to the operating conditions A, B, C and D, respectively. In the MBR, free ammonia (FA) was used to selectively inhibit nitrite oxidizing bacteria (NOBs), and then ammonia oxidizing bacterias (AOBs) gradually became the dominant flora, and the nitrite accumulation rate (NAR) stably reached 61.7%. By gradually domesticating the tolerance of DPBs to ${\rm{NO}}_2^ - $-N, the synergistic effects of different microorganisms occurred and the stable running of the system was optimized. At the ABR volume load rate of 2.55 kg·(m3·d)?1, the free nitrous acid (FNA) of 0.001 3 mg·L?1 had a serious inhibitory effect on DPBs, and minimized the phosphorus absorption effect.
Key words:denitrifying phosphorus removal/
substrate concentration/
free nitrous acid/
free ammonia/
nitrite accumulation rate.

加载中

图1ABR-MBR工艺实验装置
Figure1.Schematic diagram of ABR-MBR setup


下载: 全尺寸图片幻灯片


图2MBR出水${\rm{NO}}_3^ - $-N和${\rm{NO}}_2^ - $-N及NAR的变化
Figure2.Variations of ${\rm{NO}}_3^ - $-N, ${\rm{NO}}_2^ - $-N and NAR in MBR outflow


下载: 全尺寸图片幻灯片


图3基质浓度对系统COD去除率的影响
Figure3.Influence of substrate concentration on COD removal efficiency


下载: 全尺寸图片幻灯片


图4基质浓度对系统TN去除率的影响
Figure4.Influence of substrate concentration on TN removal efficiency


下载: 全尺寸图片幻灯片


图5基质浓度对磷去除率的影响
Figure5.Influence of substrate concentration on phosphorus removal efficiency


下载: 全尺寸图片幻灯片

表1实验过程及参数
Table1.Experimental process and parameters
工况时间/dHRT/hCOD/
(mg·L?1)
TN/
(mg·L?1)
TP/
(mg·L?1)
VLR/
(kg·(m3·d)?1)
ABRMBR
A153~17494.5380607.51.02
B175~19094.557080111.53
C191~20494.5760120152.04
D205~21894.5950150182.55

工况时间/dHRT/hCOD/
(mg·L?1)
TN/
(mg·L?1)
TP/
(mg·L?1)
VLR/
(kg·(m3·d)?1)
ABRMBR
A153~17494.5380607.51.02
B175~19094.557080111.53
C191~20494.5760120152.04
D205~21894.5950150182.55

下载: 导出CSV

[1] KUBA T, MURNLEITNER E, LOOSDRECHT M C M V, et al. A metabolic model for biological phosphorus removal by denitrifying organisms[J]. Biotechnology and Bioengineering, 1996, 52(6): 685-695. doi: 10.1002/(SICI)1097-0290(19961220)52:6<685::AID-BIT6>3.0.CO;2-K
[2] WANG Y, ZHOU S, YE L, et al. Nitrite survival and nitrous oxide production of denitrifying phosphorus removal sludges in long-term nitrite/nitrate-fed sequencing batch reactors[J]. Water Research, 2014, 67: 33-45. doi: 10.1016/j.watres.2014.08.052
[3] 张建华, 彭永臻, 张淼, 等. 不同电子受体配比对反硝化除磷特性及内碳源转化利用的影响[J]. 化工学报, 2015, 66(12): 5045-5053.
[4] 祝贵兵, 彭永臻, 郭建华. 短程硝化反硝化生物脱氮技术[J]. 哈尔滨工业大学学报, 2008, 40(10): 1552-1557. doi: 10.3321/j.issn:0367-6234.2008.10.009
[5] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
[6] 孙艺齐, 卞伟, 李军, 等. 15 ℃ SBBR短程硝化快速启动和稳定运行性能[J]. 环境科学, 2019, 40(5): 1-11.
[7] MULDER J W, LOOSDRECHT M C M V, HELLINGA C, et al. Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering[J]. Water Science and Technology, 2001, 43(11): 127-134. doi: 10.2166/wst.2001.0675
[8] HELLINGA C, SCHELLEN A A J C, MULDER J W, et al. The sharon process: An innovative method for nitrogen removal from ammonium-rich waste water[J]. Water Science and Technology, 1998, 37(9): 135-142. doi: 10.2166/wst.1998.0350
[9] 张功良, 李冬, 张肖静, 等. 低温低氨氮SBR短程硝化稳定性实验研究[J]. 中国环境科学, 2014, 34(3): 610-616.
[10] 孙洪伟, 尤永军, 赵华南, 等. 游离氨对硝化菌活性的抑制及可逆性影响[J]. 中国环境科学, 2015, 35(1): 95-100.
[11] ANTHONISEN A C, LOEHR R C, PRAKASAM T B S. Inhibition of nitrification by ammonia and nitrous acid[J]. Journal Water Pollution Control Federation, 1976, 48(5): 835-852.
[12] 张婷, 吴鹏, 沈耀良, 等. CSTR和MBR反应器的短程硝化快速启动[J]. 环境科学, 2017, 38(8): 3399-3405.
[13] RUBIO-RINCóN F J, LOPEZ-VAZQUEZ C M, WELLES L, et al. Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes[J]. Water Research, 2017, 120: 156-164. doi: 10.1016/j.watres.2017.05.001
[14] RIBERA-GUARDIA A, MARQUES R, ARANGIO C, et al. Distinctive denitrifying capabilities lead to differences in N2O production by denitrifying polyphosphate accumulating organisms and denitrifying glycogen accumulating organisms[J]. Bioresource Technology, 2016, 219: 106-113. doi: 10.1016/j.biortech.2016.07.092
[15] ZHANG S H, HUANG Y, HUA Y M. Denitrifying dephosphatation over nitrite: Effects of nitrite concentration, organic carbon, and pH[J]. Bioresource Technology, 2010, 101(11): 3870-3875. doi: 10.1016/j.biortech.2009.12.134
[16] DUAN H, GAO S, LI X, et al. Improving wastewater management using free nitrous acid (FNA)[J]. Water Research, 2020, 171: 115382. doi: 10.1016/j.watres.2019.115382
[17] ZHOU Y, OEHMEN A, LIM M, et al. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants[J]. Water Research, 2011, 45(15): 4672-4682. doi: 10.1016/j.watres.2011.06.025
[18] ZENG W, WANG A, ZHANG J, et al. Enhanced biological phosphate removal from wastewater and clade-level population dynamics of “Candidatus Accumulibacter phosphatis” under free nitrous acid inhibition: Linked with detoxication[J]. Chemical Engineering Journal, 2016, 296: 234-242. doi: 10.1016/j.cej.2016.03.063
[19] ZHOU Y, GANDA L, LIM M, et al. Response of poly-phosphate accumulating organisms to free nitrous acid inhibition under anoxic and aerobic conditions[J]. Bioresource Technology, 2012, 116: 340-347. doi: 10.1016/j.biortech.2012.03.111



加载中


Turn off MathJax -->
WeChat 点击查看大图



图( 5)表( 1)
计量

文章访问数:689
HTML全文浏览数:689
PDF下载数:18
施引文献:0
出版历程

收稿日期:2020-06-01
录用日期:2020-09-24
网络出版日期:2021-03-24
-->刊出日期:2021-03-10




-->








基质浓度对ABR-MBR短程反硝化除磷工艺效能的影响

韦佳敏1,,
沈耀良2,,,
黄慧敏3,
蒋志云2,
刘文如2
通讯作者: 沈耀良,ylshen@mail.usts.edu.cn ;
作者简介: 韦佳敏(1993—),男,硕士,助教。研究方向:水污染控制与理论。E-mail:478223661@qq.com 1.江苏理工学院化学与环境工程学院,常州 213001
2.苏州科技大学环境科学与工程学院,苏州 215009
3.维尔利环保科技集团股份有限公司,常州 213125
收稿日期: 2020-06-01
录用日期: 2020-09-24
网络出版日期: 2021-03-24
关键词: 反硝化除磷/
基质浓度/
游离亚硝酸/
游离氨/
亚硝酸盐积累率
摘要:以低C/N值生活污水为处理对象,重点考察了基质浓度对厌氧折流板反应器-膜生物反应器(ABR-MBR)系统短程反硝化除磷效能的影响。结果表明:控制C/N/P值不变,逐步提高进水基质浓度,在工况A、B、C和D下所对应的ABR容积负荷(VLR,以COD计)分别为1.02、1.53、2.04和2.55 kg·(m3·d)?1;在MBR反应器中,通过游离氨(FA)选择性抑制亚硝酸盐氧化菌(NOBs),使得氨氧化菌(AOBs)逐渐成为优势菌群,亚硝酸盐积累率(NAR)稳定在61.7%;通过逐步驯化DPBs对${\rm{NO}}_2^ - $-N的耐受能力,以实现不同微生物的协同作用,优化系统的稳定运行。在ABR容积负荷为2.55 kg·(m3·d)?1时,游离亚硝酸(FNA)为0.001 3 mg·L?1,对DPBs产生了严重抑制作用,吸磷效果降至最低。

English Abstract






--> --> --> 反硝化除磷菌(DPBs)具有与普通聚磷菌类似的代谢机理。在厌氧条件下DPBs利用胞内聚磷(Poly-P)及糖原(Gly)分解所获得的能量将挥发性脂肪酸(VFA)转移至体内合成PHA,宏观表现为${\rm{PO}}_4^{3 - }$-P浓度的升高,该阶段为释磷阶段。在缺氧条件下,DPBs利用${\rm{NO}}_x^ - $-N代替O2作为电子受体,将厌氧合成的PHA分解,产生的能量用于吸收${\rm{PO}}_4^{3 - }$-P并合成Poly-P存储于胞内,同时伴随着糖原的再生,即缺氧吸磷,从而实现了氮磷的同步去除[1]。目前大多数的反硝化除磷研究都是以${\rm{NO}}_3^ - $-N作为电子受体,并且效果良好。而${\rm{NO}}_2^ - $-N是硝化和反硝化过程的中间产物,DPBs若能以其作为电子受体则能减少碳源消耗及曝气量,并且由于其生长速率相对较慢,因此,也能减少污泥的产量。近期有研究[2-3]表明,当${\rm{NO}}_2^ - $-N浓度较低时,DPBs能够以${\rm{NO}}_2^ - $-N为电子受体吸磷,并且未受到抑制。而短程硝化与全程硝化相比具有节省曝气量、反应速率快等优点[4],因此,短程反硝化除磷工艺受到更多****的关注。
近年来,多数研究者采用批次实验验证了${\rm{NO}}_2^ - $-N作为反硝化除磷电子受体的可行性,然而,鲜有研究者考察${\rm{NO}}_2^ - $-N对长期运行效能的影响。ABR反应器具有微生物相分离以及对底物不同阶段和程度转化的优势,可产生VFA等优质碳源,同时,MBR具有高效的生物截留作用而被日益广泛地使用。本研究采用ABR-MBR工艺,驯化DPBs对${\rm{NO}}_2^ - $-N的耐受程度,考察了在长期运行条件下${\rm{NO}}_2^ - $-N对反硝化吸磷的抑制程度及耐受限度,以期寻找出最佳的运行负荷,以实现碳氮磷的同步高效去除。

ABR-MBR工艺实验装置及处理流程如图1所示,其由含有7个隔室的ABR反应器及好氧MBR反应器组成。反应器总有效容积为11.4 L,其中ABR有效容积为7.6 L,A1~A4为厌氧区,A5~A7为缺氧区,MBR设有沉淀区进行硝化液回流,有效容积为3.8 L,采用间歇抽吸出水,抽吸周期为10 min (8 min抽吸出水和2 min反冲洗)。ABR-MBR工艺设有3个回流为R1、R2、R3。污泥回流R1(污泥为A7~A2),将富含DPBs的污泥回流至厌氧A2隔室,通过A1隔室的水解酸化作用,旨在为DPBs提供优质碳源;污泥回流R2(污泥为A3~A5),利用A4隔室对剩余碳源进一步降解,消除传统反硝化菌对DPBs电子受体的竞争;硝化液回流R3从MBR沉淀区回流至A5,为DPBs提供电子受体。


表1为实验过程及其中对应的参数。由表1可知,实验分为4个工况,第1工况共运行22 d,其他每个工况均运行14 d。实验前152 d主要包括反硝化除磷的启动和考察HRT对系统的影响,得出最佳条件:ABR反应器HRT为9 h、污泥回流比保持在80%、硝化液回流比稳定在300%、反硝化除磷功能区(A2、A3、A5~A7)污泥龄(SRT)为25 d。控制MBR反应器内溶解氧在0.5~1.0 mg·L?1,水温通过水浴加热维持在(30±2) ℃,污泥龄为15 d。控制系统进水C/N/P值不变,逐步提高进水基质浓度,稳定MBR内短程硝化的运行,以实现ABR-MBR短程反硝化除磷工艺的优化与稳定。





COD、${\rm{NH}}_4^ + $-N、${\rm{NO}}_2^ - $-N、${\rm{NO}}_3^ - $-N、${\rm{PO}}_4^{3 - }$-P、TN等指标采用标准方法[5]测定,水样采用0.45 μm中速滤纸过滤,以去除悬浮物的影响,其中COD采用快速消解法;${\rm{NH}}_4^ + $-N采用纳氏试剂光度法测定;${\rm{NO}}_2^ - $-N采用N-(1-萘基)-乙二胺光度法测定;${\rm{NO}}_3^ - $-N采用紫外分光光度法;${\rm{PO}}_4^{3 - }$-P采用钼锑抗分光光度法;TN采用过硫酸钾氧化-紫外分光光度法;MLSS采用滤纸称重法测定。
亚硝酸盐积累率(NAR)按照式(1)计算。游离亚硝酸(FNA)及游离氨(FA)值按照式(2)和式(3)进行计算。
式中:η为亚硝酸盐积累率;${C_{{\rm{NO}}_2^ - \rm{\text{-} N}}}$${C_{{\rm{NO}}_3^ - \rm{ \text{-} N}}}$为反应器中${\rm{NO}}_2^ - $-N及${\rm{NO}}_3^ - $-N的质量浓度,mg·L?1
式中:CFNA为游离亚硝酸的浓度,mg·L?1CFA为游离氨的浓度,mg·L?1T为该系统的温度,℃;$C_{{\rm{NH}}_4}^ + {{\rm{ \text{-} N}}}$为反应器中${\rm{NH}}_4^ + $-N的质量浓度,mg·L?1

图2所示,在工况A、B、C和D下,MBR反应器内对应的平均亚硝酸盐积累率分别为43.9%、51.3%、56.8%和61.7%。在工况A下,${\rm{NH}}_4^ + $-N转化率高达98%;随着反应的持续进行,较低的${\rm{NH}}_4^ + $-N负荷使得AOBs的基质逐步缺失,同时较低的${\rm{NH}}_4^ + $-N浓度也使得FA值较低,因此,MBR反应器对NOBs的抑制效果较差,具有较强活性的NOBs会将${\rm{NO}}_2^ - $-N继续氧化为${\rm{NO}}_3^ - $-N,从而使得NAR较低,所以,保证充足的氨氮浓度和抑制NOBs的生长是短程硝化稳定运行的关键所在[6]。随着基质浓度的上升,${\rm{NH}}_4^ + $-N负荷逐渐升高,在工况C和工况D下,出水${\rm{NH}}_4^ + $-N出现少量剩余,这说明AOBs基质浓度充足,且其活性逐渐增强。


本研究中,短程硝化稳定运行的因素主要归于以下几点:首先是合适的SRT。MULDER等[7]的研究表明,在14 ℃以上时,AOBs和NOBs的世代周期分别为8~36 h和12~59 h。因此,将污泥龄控制在AOBs与NOBs最小世代周期内,NOBs就会被逐渐淘洗掉,使AOBs成为优势菌群,本研究通过排除泥水混合液将泥龄控制在15 d。其次是适宜的温度。在20 ℃时,AOBs和NOBs的比增长速率μmax分别为0.801 d?1和0.788 d?1;当温度低于20 ℃时,AOBs的μmax小于NOBs,大于20 ℃时则相反[8]。再次是维持较低的DO浓度。有研究[9]表明,AOBs的氧饱和系数为0.2~0.4 mg·L?1,NOBs的氧饱和系数为1.2~1.6 mg·L?1,因此,控制DO浓度是实现短程硝化的限制性因素,本研究将DO浓度基本维持在0.7 mg·L?1左右,由于NOBs的活性长期受到抑制,故使得NAR逐渐升高。最后是控制较高的FA值,从而抑制NOBs的生长[10]。有研究[11]表明,当FA浓度为0.1~1.0 mg·L?1时,NOBs则会受到其抑制作用,FA浓度达到6 mg·L?1时,则NOBs的生长代谢则几乎被完全抑制,而AOBs对FA的受抑制范围则为10~150 mg·L?1。在工况A、B、C和D下,FA的浓度分别为4.48、6.72、8.96和11.19 mg·L?1,在工况D下,${\rm{NH}}_4^ + $-N浓度为150 mg·L?1,NAR稳定在60%以上,通过FA选择性抑制NOBs,可使系统短程硝化高效稳定运行。

图3为系统对COD的去除情况。由图3可知,在工况A、B、C和D下,系统对COD的去除率分别为90.6 %、93.3 %、94.6 %和95.3%。随着进水COD逐渐上升,其对应的ABR容积负荷(以COD计)分别为1.02、1.53、2.04和2.55 kg·(m3·d)?1。在工况A和工况B时,对COD去除占主导作用的是前3个隔室,主要是通过A1厌氧隔室的水解酸化作用产生VFA,使DPBs利用优质碳源进行厌氧释磷完成对COD的去除。而随着基质浓度的升高,容积负荷(VLR)的升高使得前3个隔室对COD的去除效率下降。在工况C和工况D时,对COD去除作用的功能隔室则逐渐后移,A4厌氧隔室通过产甲烷菌对剩余的COD进一步去除,剩余耗氧有机污染物(以COD计)则通过常规异养反硝化菌在缺氧段利用硝化液中的${\rm{NO}}_x^ - $-N被去除,至此大部分耗氧有机污染物(以COD计)已在ABR反应器去除,ABR反应器的出水分别为35.9、38.1、40.8和45.1 mg·L?1。从工况A至工况D,虽然COD呈梯度上升,但前端厌氧及缺氧隔室对${\rm{NH}}_4^ + $-N仅有少量同化作用而去除,而经过前端ABR反应器对COD较高的去除率,使得进入MBR反应器的C/N值逐渐降低。张婷等[12]研究表明,当C/N=1时,有利于短程硝化的运行,而过高的C/N值会导致普通异养菌的快速增殖,进而降低硝化反应的速率。本研究中进入MBR反应器的C/N值低于1,因此,C/N不会成为短程硝化的限制性因素。



图4所示,在工况A、B、C和D下,TN平均去除率分别为71.4%、76.6%、76.8%和56.3%。在工况A下,基质浓度较低,大部分耗氧有机污染物(以COD计)在缺氧段之前已经被完全去除,因此,系统脱氮则完全由DPBs主导,此时脱氮效率相对较低。在工况B和工况C条件下,虽然NAR稳定在55%以上,但由于回流硝化液中${\rm{NO}}_2^ - $-N浓度较低,尚未达到抑制缺氧吸磷的阈值,所以系统反硝化除磷脱氮效果依然很好,并且有剩余耗氧有机污染物(以COD计)参与了常规反硝化的作用,使得脱氮效率逐步提高。同时,GAOs可能对脱氮也具有一定的贡献。GAOs与PAOs具有相似的代谢机制,在反硝化除磷过程中,GAOs的增殖始终伴随着PAOs的富集[13]。有研究[14]报道,在缺氧条件下,GAOs可以进行与有氧条件下相同的代谢,GAOs在厌氧环境下形成的PHAs,在缺氧中利用其完成糖原的再生以及脱氮的作用,在脱氮过程中发挥了重要作用。在工况D条件下,由于基质浓度的升高使得MBR反应器内的NAR较高,进而使得回流硝化液中${\rm{NO}}_2^ - $-N浓度超过了DPBs的耐受限度,导致反硝化吸磷效果较低,从而降低了脱氮的效能。而较高的基质浓度使得AOBs对氨氮的转化率也下降至84.2%,测定到的出水${\rm{NH}}_4^ + $-N平均浓度为22.92 mg·L?1,因此,一定的基质浓度范围有利于系统的脱氮效能。



图5所示,在工况A、B、C和D下,对应的ABR反应器中容积负荷(以${\rm{PO}}_4^{3 - }$-P计)分别为0.021、0.032、0.043和0.053 kg·(m3·d)?1,系统对磷的平均去除率分别为89.96%、95.74%、93.3%和1.84%。在工况A条件下,MBR反应器NAR平均为43.9%,且系统除磷率达到89.96%。这表明${\rm{NO}}_2^ - $-N能够作为电子受体实现除磷,与ZHANG等[15]的研究结论一致,即低浓度的${\rm{NO}}_2^ - $-N并未抑制反硝化吸磷作用的进行。RUBIO-RINCóN等[13]使用16S rRNA基因扩增子测序和多聚磷酸盐激酶基因(ppk1)作为遗传标记,结果表明,“Candidatus Accumulibacter ”分为2个主要的支系(PAO Ⅰ和PAO Ⅱ)。同时,通过宏基因组分析表明,PAO II的宏基因组缺乏呼吸硝酸盐还原酶(nar),但具有利用亚硝酸盐还原为氮气的能力,这表明PAO Ⅱ不能利用硝酸盐进行除磷,而PAO Ⅰ则能够利用O2${\rm{NO}}_2^ - $-N及${\rm{NO}}_3^ - $-N。


在工况B条件下,虽然ABR进水磷负荷升高至0.032 kg·(m3·d)?1,MBR反应器平均NAR为51.3%,${\rm{NO}}_2^ - $-N平均浓度达到10.60 mg·L?1,但出水${\rm{PO}}_4^{3 - }$-P依旧稳定在0.5 mg·L?1左右,${\rm{PO}}_4^{3 - }$-P的去除率高达95.74%,表明DPBs对${\rm{NO}}_2^ - $-N的耐受并未达到极限。在工况C条件下,随着容积负荷的升高,出水${\rm{NO}}_2^ - $-N平均浓度为13.28 mg·L?1,回流硝化液中${\rm{NO}}_2^ - $-N浓度随之升高,这对DPBs有一定的影响,在第190天时,出水${\rm{PO}}_4^{3 - }$-P增至2.41 mg·L?1。随着ABR反应器内反硝化除磷功能区对DPBs的驯化,出水平均${\rm{PO}}_4^{3 - }$-P稳定至1.0 mg·L?1以下。在工况D下,回流${\rm{NO}}_x^ - $-N中${\rm{NO}}_2^ - $-N/${\rm{NO}}_3^ - $-N为0.617,出水${\rm{NO}}_2^ - $-N平均浓度高达24.9 mg·L?1,磷去除率瞬间下降,甚至出现了负值,磷吸收阶段受到严重的抑制作用。诸多研究[16-18]表明,亚硝酸质子化产物—游离亚硝酸(FNA)是缺氧吸磷真正的抑制剂,而并非是亚硝酸盐的影响所致。在工况D条件下,FNA为0.001 3 mg·L?1,低于ZHOU等[19]所报道的FNA对缺氧磷吸收完全抑制的浓度。FNA对吸磷的抑制作用主要是通过对微生物新陈代谢的影响得以实现:首先,FNA影响ATP的合成,能够提高质子透过膜的透过性,导致质子推动力的效果变差,从而影响了胞内聚磷的合成[17];其次,FNA抑制反硝化酶的活性以及缺氧过程PHA的氧化,ZENG等[18]的研究表明,在缺氧条件下,当FNA完全抑制吸磷时,PHA首先被用于${\rm{NO}}_2^ - $-N的还原从而实现解毒作用,而不是作为吸磷的能量来源被DPBs分解。

1)控制ABR反应器HRT为9 h、C/N/P值不变、提高进水基质浓度,在此条件下,MBR反应器在工况A、B、C和D下平均亚硝酸盐积累率分别为43.9%、51.3%、56.8%和61.7%;通过SRT、DO浓度、温度及FA的协同作用稳定短程硝化的运行,控制FA选择性抑制NOBs的功能,可使AOBs逐渐成为优势菌群。
2)随着基质浓度的上升,负荷的升高使得前3隔室的COD去除率下降。在工况C和工况D下,对COD去除作用的功能隔室则逐渐后移,剩余耗氧有机污染物(以COD计)则通过常规异养反硝化菌在缺氧段利用硝化液中的${\rm{NO}}_x^ - $-N被去除;同时基质浓度的上升也提高了脱氮率,在一定的基质浓度范围内有利于系统的处理效能。
3) FNA是缺氧吸磷真正的抑制剂。在FNA为0.001 3 mg·L?1时,磷去除率骤降,缺氧吸磷受到严重的抑制,这主要是因为FNA影响了ATP的合成,并且FNA抑制反硝化酶的活性以及缺氧过程中PHA的氧化。

参考文献 (19)
相关话题/系统 控制 电子 实验 工艺