3.中国科学院地球化学研究所,环境地球化学国家重点实验室,贵阳 550081
1.College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
2.Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
3.State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
锑(Sb)污染是我国的典型环境问题之一,高浓度的Sb废水是Sb矿区一个重要的Sb污染来源,治理Sb矿废水的重点是高效去除水中的Sb(Ⅴ)。因此本研究采用经典吸附实验方法,用改性生物炭去除水溶液中的Sb(Ⅴ),旨在评价该改性生物炭在含Sb废水中的应用效果和潜力;结果显示,生物炭经过改性处理后吸附Sb(Ⅴ)能力显著增大,热解温度为600 ℃得到的改性生物炭(MC600),在投加比为2.5 g·L
=0.993),吸附过程主要为非均匀表面吸附;吸附等温实验中MC600对Sb(Ⅴ)的吸附行为适用于Langmuir和Langmuir-Freundlich模型拟合(
=0.981、0.980),表明MC600对Sb(Ⅴ)的吸附主要以单分子层吸附为主,并伴有部分多分子层吸附。通过对MC600吸附高浓度Sb(Ⅴ)后的样品进行解吸,2种样品3次总解吸率均低于30%,表明MC600吸附Sb(Ⅴ)的效果稳定。以上结果表明,改性的MC600对高浓度Sb废水中Sb(Ⅴ) 的去除具有潜在的应用前景。
Antimony (Sb) pollution is one of the typical environmental issues in China. High concentration of Sb in wastewater is an important source of Sb pollution in Sb mining area. The key point of treating Sb mine wastewater lies in high efficient removal of Sb(Ⅴ) in wastewater. To evaluate the removal efficiency and capacity of Sb(Ⅴ) from Sb-containing wastewater by modified biochar, batch experiments were conducted in this study. The results showed that Sb(Ⅴ) adsorption performance increased for the biochar after modification. The adsorption kinetics experiment indicated that the Sb(Ⅴ) adsorption by MC600 conforms to the Elovich model (
=0.993), and the adsorption process was mainly non-uniform surface adsorption. In the adsorption isotherm experiment, the Sb(Ⅴ) adsorption behavior of MC600 was suitable for Langmuir and Langmuir-Freundlich models with respective
value of 0.981 and 0.980, which showed that the Sb(Ⅴ) adsorption on MC600 was mainly single molecular layer adsorption with partial multi-molecular layer one. The modified biochar (MC600) pyrolyzed at 600 ℃ presented the maximum adsorption amount for Sb(Ⅴ) at the dosage of 2.5 g·L
and pH=7.5. The maximum adsorption capacity determined by the Langmuir model was 8 089 mg·kg
. According to the desorption experiment, the total desorption ratios of Sb(Ⅴ) from two MC600 samples were less than 30%, which showed that Sb(Ⅴ) adsorption on MC600 was stable. This study provided an alternative way for Sb(Ⅴ) removal from Sb-rich wastewater.
.
Sb(Ⅴ) adsorption effect of biochar prepared at different pyrolysis temperatures
Effect of MC600 dosage on Sb(Ⅴ) adsorption
Effect of different pH on Sb(Ⅴ) adsorption
Adsorption kinetics of Sb(Ⅴ) on different biochar
Adsorption isotherm of Sb(Ⅴ) on different biochar
[1] | ELLIOTT B M, MACKAY J M, CLAY P, et al. An assessment of the genetic toxicology of antimony trioxide[J]. Genetic Toxicology and Environmental Mutagenesis, 1998, 415(1): 109-117. |
[2] | CZGNY Z, JAKAB E, BLAZSO M, et al. Thermal decomposition of polymer mixtures of PVC, PET and ABS containing brominated flame retardant: Formation of chlorinated and brominated organic compounds[J]. Journal of Analytical and Applied Pyrolysis, 2012, 96(12): 69-77. |
[3] | HE M C, WANG X Q, WU F C, et al. Antimony pollution in China[J]. Science of the Total Environment, 2012, 421-422(3): 41-50. |
[4] | UNGUREANU G, SANTOS S, BOAVENTURA R, et al. Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption[J]. Journal of Environmental Management, 2015, 151: 326-342. |
[5] | LIU F, LE X C, MCKNIGHT-WHITFORD A, et al. Antimony speciation and contamination of waters in the Xikuangshan antimony mining and smelting area, China[J]. Environmental Geochemistry and Health, 2010, 32(5): 401-413. doi: 10.1007/s10653-010-9284-z |
[6] | LI J Y, ZHENG B H, HE Y Z, et al. Antimony contamination, consequences and removal techniques: A review[J]. Ecotoxicology and Environmental Safety, 2018, 156: 125-134. doi: 10.1016/j.ecoenv.2018.03.024 |
[7] | WANG X Q, HE M C, XI J H, et al. Antimony distribution and mobility in rivers around the world’s largest antimony mine of Xikuangshan, Hunan Province, China[J]. Microchemical Journal, 2011, 97(1): 4-11. doi: 10.1016/j.microc.2010.05.011 |
[8] | HILLER E, LALINSK B, CHOVAN M, et al. Arsenic and antimony contamination of waters, stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians, Slovakia[J]. Applied Geochemistry, 2012, 27(3): 598-614. doi: 10.1016/j.apgeochem.2011.12.005 |
[9] | RITCHIE V J, ILGEN A G, MUELLER S H, et al. Mobility and chemical fate of antimony and arsenic in historic mining environments of the Kantishna Hills district, Denali National Park and Preserve, Alaska[J]. Chemical Geology, 2013, 335(1): 172-188. |
[10] | 符云聪, 李鹏祥, 刘代欢, 等. 不同修复技术去除水中锑的研究进展[J]. 中国农学通报, 2019, 35(9): 102-108. doi: 10.11924/j.issn.1000-6850.casb17110079 |
[11] | INAM M A, KHAN R, PARK D R, et al. Removal of Sb(Ⅲ) and Sb(Ⅴ) by ferric chloride coagulation: Implications of Fe solubility[J]. Water, 2018, 10(4): 418-430. doi: 10.3390/w10040418 |
[12] | KAMEDA T, NAKAMURA M, YOSHIOKA T. Removal of antimonate ions from an aqueous solution by anion exchange with magnesium-aluminum layered double hydroxide and the formation of a brandholzite-like structure[J]. Journal of Environmental Science and Health, 2012, 47(8): 1146-1151. doi: 10.1080/10934529.2012.668121 |
[13] | SONG P P, YANG Z H, ZENG G M, et al. Optimization, kinetics, isotherms, and thermodynamics studies of antimony removal in electrocoagulation process[J]. Water, Air and Soil Pollution, 2015, 226(11): 380-391. doi: 10.1007/s11270-015-2615-z |
[14] | SUN W M, XIAO E Z, KALIN M, et al. Remediation of antimony-rich mine waters: Assessment of antimony removal and shifts in the microbial community of an onsite field-scale bioreactor[J]. Environmental Pollution, 2016, 215: 213-222. doi: 10.1016/j.envpol.2016.05.008 |
[15] | YU T C, WANG X H, LI C. Removal of antimony by FeCl3-modified granular-activated carbon in aqueous solution[J]. Journal of Environmental Engineering, 2014, 140(9): A4014001. |
[16] | 张亚平, 张婷, 陈锦芳, 等. 水、土环境中锑污染与控制研究进展[J]. 生态环境学报, 2011, 20(8): 1373-1378. doi: 10.3969/j.issn.1674-5906.2011.08.030 |
[17] | LONG X J, WANG X, GUO X J, et al. A review of removal technology for antimony in aqueous solution[J]. Journal of Environmental Science, 2020, 90: 189-204. doi: 10.1016/j.jes.2019.12.008 |
[18] | LIAN G Q, WANG B, LEE X, et al. Enhanced removal of hexavalent chromium by engineered biochar composite fabricated from phosphogypsum and distillers grains[J]. Journal of Environmental Science, 2019, 697: 134119. |
[19] | LIU T Z, WANG B, FANG J, et al. Biochar-supported carbon nanotube and graphene oxide nanocomposites for Pb(Ⅱ) and Cd(Ⅱ) removal[J]. RSC Advances, 2016, 6(29): 24314-24319. doi: 10.1039/C6RA01895E |
[20] | 王涛. 黄甜竹笋壳生物炭吸附水溶液中铜离子的研究[D]. 福州: 福州大学, 2018. |
[21] | 郭素华, 许中坚, 李方文, 等. 生物炭对水中Pb(Ⅱ)和Zn(Ⅱ)的吸附特征[J]. 环境工程学报, 2015, 9(7): 3215-3222. doi: 10.12030/j.cjee.20150723 |
[22] | WANG Z H, SHEN D K, SHEN F, et al. Phosphate adsorption on lanthanum loaded biochar[J]. Chemosphere, 2016, 150: 1-7. doi: 10.1016/j.chemosphere.2016.02.004 |
[23] | LI X H, DOU X M, LI J Q, et al. Antimony(V) removal from water by iron-zirconium bimetal oxide: Performance and mechanism[J]. Journal of Environmental Science, 2012, 24(7): 1197-1203. doi: 10.1016/S1001-0742(11)60932-7 |
[24] | 李佳霜, 冒国龙, 赵松炎, 等. 改性生物炭吸附废水中Sb(Ⅴ)的特性[J]. 江苏农业科学, 2019, 47(8): 289-295. |
[25] | WANG B, LIAN G Q, LEE X, et al. Phosphogypsum as a novel modifier for distillers grains biochar removal of phosphate from water[J]. Chemosphere, 2020, 238: 124684. doi: 10.1016/j.chemosphere.2019.124684 |
[26] | LI L, TU H, ZHANG S, et al. Geochemical behaviors of antimony in mining-affected water environment (Southwest China)[J]. Environmental Geochemistry and Health, 2019, 41(6): 2397-2411. doi: 10.1007/s10653-019-00285-8 |
[27] | 王彤彤, 马江波, 曲东, 等. 两种木材生物炭对铜离子的吸附特性及其机制[J]. 环境科学, 2017, 38(5): 2161-2171. |
[28] | 石程好. 镧负载稻壳基生物炭除磷性能研究[D]. 武汉: 华中科技大学, 2018. |
[29] | 宁增平, 肖唐付, 杨菲, 等. 锑矿区水体水环境锑污染及硫同位素示踪研究[J]. 矿物岩石地球化学通报, 2011, 30(2): 135-141. doi: 10.3969/j.issn.1007-2802.2011.02.003 |
[30] | LI H B, DONG X L, SILVA E B, et al. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications[J]. Chemosphere, 2017, 178: 466-478. doi: 10.1016/j.chemosphere.2017.03.072 |
[31] | WILSON S C, LOCKWOOD P V, ASHLEY P M, et al. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review[J]. Environmental Pollution, 2010, 158(5): 1169-1181. doi: 10.1016/j.envpol.2009.10.045 |
[32] | KAMEDA T, KONDO E, YOSHIOKA T. Equilibrium and kinetics studies on As(V) and Sb(V) removal by Fe2+-doped Mg-Al layered double hydroxides[J]. Chemical Engineering Journal, 2015, 151: 303-309. |
[33] | ESZ E A, AMIN N K, ABDELWAHAB O. Removal of lead(Ⅱ) and copper(Ⅱ) from aqueous solution using pomegranate peel as a new adsorbent[J]. Desalination, 2008, 223(1/2/3): 162-173. |
[34] | 安增莉. 生物炭的制备及其对Pb(Ⅱ)的吸附特性研究[D]. 泉州: 华侨大学, 2011. |
[35] | 张华. 柚皮基活性炭制备及吸附应用机理研究[D]. 南宁: 广西大学, 2013. |
[36] | 李璐璐, 张华, 周世伟, 等. 中国南方两类典型土壤对五价锑的吸附行为研究[J]. 土壤学报, 2014, 51(2): 278-285. doi: 10.11766/trxb201307130335 |
[37] | ZHOU Z, LIU Y G, LIU S B, et al. Sorption performance and mechanisms of arsenic(Ⅴ) removal by magnetic gelatin-modified biochar[J]. Chemical Engineering Journal, 2017, 314: 223-231. doi: 10.1016/j.cej.2016.12.113 |
[38] | 李锦, 祖艳群, 李刚, 等. 载镧或铈生物炭吸附水体中As(Ⅴ)的作用机制[J]. 环境科学, 2017, 39(5): 2211-2218. |
[39] | 李国亭, 冯艳敏, 柴晓琪, 等. 镧改性活性炭纤维高效吸附去除对苯醌[J]. 环境工程学报, 2016, 10(4): 66-72. |
[40] | 张莹雪, 胥思勤, 李佳霜. Sb(Ⅲ)和Sb(Ⅴ)在不同吸附剂上的吸附特征[J]. 土壤, 2018, 50(1): 139-147. |
[41] | WANG X Q, HE M C, LIN C Y, et al. Antimony(III) oxidation and antimony(V) adsorption reactions on synthetic manganite[J]. Chemie der Erde-Geochemistry, 2012, 72(S4): 41-47. |
[42] | ZHAO X Q, DOU X M, MOHAN A, et al. Antimonate and antimonite adsorption by a polyvinyl alcohol-stabilized granular adsorbent containing nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2014, 247: 250-257. doi: 10.1016/j.cej.2014.02.096 |
[43] | LUO J M, LUO X B, CRITTENDEN J, et al. Removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2)[J]. Environmental Science Technology, 2015, 49: 11115-11124. doi: 10.1021/acs.est.5b02903 |
[44] | WANG L, WANG J Y, WANG Z X, et al. Enhanced antimonate (Sb(V)) removal from aqueous solution by La-doped magnetic biochars[J]. Chemical Engineering Journal, 2018, 354: 623-632. doi: 10.1016/j.cej.2018.08.074 |