2.生物膜法水质净化及利用技术教育部工程研究中心,马鞍山 243032
1.College of Architectural Engineering, Anhui University of Technology, Ma′anshan 243032, China
2.Engineering Research Center of Water Purification and Utilization Technology Based on Biofilm Process, Ministry of Education, Ma′anshan 243032, China
为解决载体內部微孔孔径在废水生物膜法中缺乏选型依据的问题,采用5种孔径(0.6~4 mm)聚氨酯海绵生物载体构建了SBBR,考察了载体内微孔孔径对生物膜特性(MLSS、EPS、DHA)及废水处理效果的影响,分析了载体内部微孔孔径与生物膜特性的相关性。结果表明:载体内微孔孔径与MLVSS、MLSS呈显著负相关,而与PN、PS、EPS和
呈显著正相关;高生物量使小孔径载体(0.6 mm,1 mm)在反应器运行前中期拥有最佳的废水处理效果,同时过多的生物膜在微孔环境中会堵塞内部的通道和空穴,进而抑制传质,使生物膜活性(DHA、
)降低;而大孔径载体(4 mm)内部传质快、水力剪切作用强,加速生物膜解吸脱落速率,促进了生物膜活性的提高与EPS(主要是TB-EPS)的释放,但同样限制了生物膜量的增长。相较而言,中等孔径载体(2 mm,3 mm)适宜的微孔不仅能维持适量的微生物量,还能保持良好的生物膜结构和活性,为生物膜反应器提供良好的长期运行条件和处理效果。
In order to improve the lack of selection basis of micropore size of the carrier of wastewater biofilm process, polyurethane sponge carrier with 5 micropore diameters (0.6~4 mm) were used to build five laboratory-scale sequencing batch biofilm reactors (SBBR). The effect of the micropore diameter of the carrier on the biofilm characteristics (biomass, EPS and DHA) and wastewater treatment performance was investigated. The relationship between the micropore diameter of the carrier and the biofilm characteristics was analyzed. The results showed that the micropore diameter of the carrier was negatively correlated with MLVSS and MLSS, but positively correlated with PN, PS, EPS and
. During the early and middle periods of SBBR operation, high biomass led to the best wastewater treatment effect by the small-pore carrier (0.6 mm, 1 mm), and meanwhile too much biofilm blocked the internal channels and holes in the microporous environment, thus inhibited the mass transfer, and reduced the biofilm activity (DHA,
). However, for the large-pore carrier (4 mm), the mass transfer was fast and the hydraulic shear was strong, which accelerated the desorption and detaching rate of biofilm, promoted the biofilm activity and the EPS release (mainly TB-EPS), but limited the growth of biofilm biomass. Comparatively, the appropriate micropore in medium-pore carrier (2 mm, 3 mm) could not only maintain the appropriate microbial biomass, but also ensure an excellent biofilm structure and activity, providing good long-term operating conditions and treatment performance.
.
Diagram of experimental reactors
Biomass and volatile biomass of biofilm attaching on different microporous carriers
不同微孔孔径载体生物膜EPS在各层各组分中的分布
EPS components in different layers of biofilm attaching on different microporous carriers
不同微孔孔径载体生物膜DHA在运行中的变化
DHA variation of biofilm attaching on different microporous carrier during the operation
SEM images of biofilm attaching on different microporous carrier
Pollutants concentrations in effluent and their removal effciency in reactors
载体内微孔孔径、生物膜特性以及污染物去除率间的相关系数矩阵图
Matrix diagram of correlation coefficients among the carrier micropore diameter, biofilm characteristics and removal rate of pollutants
生物载体微孔孔径对生物膜及水处理效果的影响机制
Influence mechanism of micropore diameter of the carrier on the biofilm and performance of wastewater treatment
[1] | FELF?LDI T, JURECSKA L, VAJNA B, et al. Texture and type of polymer fiber carrier determine bacterial colonization and biofilm properties in wastewater treatment[J]. Chemical Engineering Journal, 2015, 264: 824-834. |
[2] | HU H Z, HE J G, LIU J, et al. Biofilm activity and sludge characteristics affected by exogenous N-acyl homoserine lactones in biofilm reactors[J]. Bioresource Technology, 2016, 211: 339-347. |
[3] | MA W W, HAN Y X, MA W C, et al. Enhanced nitrogen removal from coal gasification wastewater by simultaneous nitrification and denitrification (SND) in an oxygen-limited aeration sequencing batch biofilm reactor[J]. Bioresource Technology, 2017, 244: 84-91. |
[4] | PICULELL M, SUAREZ C, LI C, et al. The inhibitory effects of reject water on nitrifying populations grown at different biofilm thickness[J]. Water Research, 2016, 104: 292-302. |
[5] | 胡小兵, 朱荣芳, 唐素兰, 等. 不同负荷下生物膜脱落与载体生物膜生物特性的相互影响[J]. 环境科学学报, 2017, 37(8): 2925-2935. |
[6] | OBEROI A S, PHILIP L. Performance evaluation of attached biofilm reactors for the treatment of wastewater contaminated with aromatic hydrocarbons and phenolic compounds[J]. Journal of Environmental Chemical Engineering, 2017, 5(4): 3852-3864. |
[7] | TARJáNYI-SZIKORA S, OLáH J, MAKó M, et al. Comparison of different granular solids as biofilm carriers[J]. Microchemical Journal, 2013, 107: 101-107. |
[8] | HUANG H, PENG C, PENG P C, et al. Towards the biofilm characterization and regulation in biological wastewater treatment[J]. Applied Microbiology and Biotechnology, 2019, 103(3): 1115-1129. |
[9] | DIAS J, BELLINGHAM M, HASSAN J, et al. Impact of carrier media on oxygen transfer and wastewater hydrodynamics on a moving attached growth system[J]. Chemical Engineering Journal, 2018, 351: 399-408. |
[10] | GUO K, FREGUIA S, DENNIS P G, et al. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems[J]. Environmental Science & Technology, 2013, 47(13): 7563-7570. |
[11] | LIM J W, SENG C E, LIM P E, et al. Nitrogen removal in moving bed sequencing batch reactor using polyurethane foam cubes of various sizes as carrier materials[J]. Bioresource Technology, 2011, 102(21): 9876-9883. |
[12] | NGUYEN T T, NGO H H, GUO W, et al. Effects of sponge size and type on the performance of an up-flow sponge bioreactor in primary treated sewage effluent treatment[J]. Bioresource Technology, 2010, 101(5): 1416-1420. |
[13] | AHMAD M, LIU S, MAHMOOD N, et al. Effects of porous carrier size on biofilm development, microbial distribution and nitrogen removal in microaerobic bioreactors[J]. Bioresource Technology, 2017, 234: 360-369. |
[14] | 郝晓地, 安兆伟, 孙晓明, 等. 悬浮填料强化污水生物处理的实际作用揭示[J]. 中国给水排水, 2013, 29(8): 5-9. |
[15] | 耿佳, 冯芳, 孔丹, 等. 聚氨酯生物膜载体处理高氨氮废水的研究[J]. 环境科学与技术, 2013, 36(6): 124-127. |
[16] | KUMARASAMY M V, MAHARAJ P. The effect of biofilm growth on wall shear stress in drinking water PVC pipes[J]. Polish Journal of Environmental Studies, 2015, 24: 2479-2483. |
[17] | 周芬. 混凝土改性亲水性生物填料的开发及其应用研究[D]. 广东: 华南理工大学, 2012. |
[18] | 李延, 解迪, 梁文艳, 等. SBBR反应器运行中生物膜胞外聚合物的变化特征[J]. 环境科学与技术, 2016, 39(4): 95-101. |
[19] | 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
[20] | 姚萌, 罗红元, 谢小青, 等. 城市污水厂活性污泥胞外聚合物的三维荧光特性分析[J]. 中国环境科学, 2012, 32(1): 94-99. |
[21] | FANG F, LU W T, SHAN Q, et al. Characteristics of extracellular polymeric substances of phototrophic biofilms at different aquatic habitats[J]. Carbohydrate Polymers, 2014, 106: 1-6. |
[22] | 陈寰. 苯酚-硫酸法测定好氧颗粒污泥胞外聚合物中多糖浓度的研究[J]. 四川环境, 2012, 31(5): 1-3. |
[23] | TAN C, XU H R, CUI D, et al. Effects of tourmaline on nitrogen removal performance and biofilm structures in the sequencing batch biofilm reactor[J]. Journal of Environmental Sciences, 2018, 67(5): 130-138. |
[24] | ZHU Y, ZHANG Y, REN H Q, et al. Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor[J]. Bioresource Technology, 2015, 180: 345-351. |
[25] | RENNER L D, WEIBEL D B. Physicochemical regulation of biofilm formation[J]. MRS Bulletin, 2011, 36(5): 347-355. |
[26] | 胡小兵, 叶星, 周元凯, 等. 胞外聚合物对活性污泥吸附生活污水碳源的影响[J]. 环境科学学报, 2016, 36(11): 4062-4069. |
[27] | LI T G, BAI R B, LIU J X. Distribution and composition of extracellular polymeric substances in membrane-aerated biofilm[J]. Journal of Biotechnology, 2008, 135(1): 52-57. |
[28] | 樊鹏超, 曾薇, 纪兆华, 等. 城市污水厂活性污泥中胞外聚合物与工艺运行及污泥沉降性能的相关性分析[J]. 环境科学学报, 2017, 37(8): 2996-3002. |
[29] | 宋浩亮, 邱兵, 赵奕良, 等. Ni2+对生物膜活性及胞外聚合物的短期影响[J]. 水处理技术, 2018, 44(2): 37-41. |
[30] | ZHANG X Y, LI J, YU Y B. et al. Biofilm characteristics in natural ventilation trickling filters (NVTFs) for municipal wastewater treatment: Comparison of three kinds of biofilm carriers[J]. Biochemical Engineering Journal, 2016, 106: 87-96. |
[31] | HUANG Q Y, WU H Y, CAI P, et al. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles[J]. Scientific Reports, 2015, 5: 16857. |
[32] | GONG Z, YANG F L, LIU S T, et al. Feasibility of a membrane-aerated biofilm reactor to achieve single-stage autotrophic nitrogen removal based on Anammox[J]. Chemosphere, 2007, 69(5): 776-784. |