2.昆明理工大学环境科学与工程学院,昆明 650500
1.Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, China
2.College of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
、吸收温度为35 ℃、固液比为25∶100、雾化功率为30 W的最佳条件下,磷矿浆脱硫率≥90%的反应时间可持续在620 min以上。经过对反应前后的磷矿粉及吸收液的分析,得出反应过程中一些离子及元素的变化规律。该工艺操作简便,对SO
的净化与磷矿的资源化。
In order to strengthen the wet desulfurization technology of phosphate rock slurry, the ultrasonic atomization technology was applied to the desulfurization of phosphate rock slurry. Then the effects of absorption temperature, intake flow rate, solid-liquid ratio, atomization power and pH on the desulfurization efficiency were investigated. The result showed that under the optimum conditions as follows: SO
, absorption temperature of 35 ℃, solid-liquid ratio of 25∶100 and atomization power of 30 W, the reaction time with the removal efficiency higher than 90% could maintained longer than 620 min. After analyzing the phosphate rock and the absorption liquid before and after the reaction, the changes of some ions and elements during the reaction process were determined. The technology is simple and convenient to operate and has high SO
purification efficiency, its raw materials are cheap and available, and it can produce the by-product of phosphate fertilizer, which will facilitate the implement of SO
purification in flue gas and resource utilization of phosphate rock.
.
Flow chart of experimental device
Structure of ultrasonic atomization reactor
Effect of gas flow on desulfurization rate
Effect of absorption temperature on desulfurization rate
Effect of solid-liquid ratio on desulfurization rate
Effect of atomization power on desulfurization rate
Desulfurization rate under optimal reaction conditions
Desulfurization rate and variation of pH of the solution with time on stream
SEM images of phosphate rock before reaction
SEM images of phosphate rock after reaction
[1] | ZHONG Y, GAO X, HUO W, et al. A model for performance optimization of wet flue gas desulfurization systems of power plants[J]. Fuel Processing Technology, 2008, 89(11): 1025-1032. doi: 10.1016/j.fuproc.2008.04.004 |
[2] | HRASTEL I, GERBEC M, STERGAR?EK A. Technology optimization of wet flue gas desulfurization process[J]. Chemical Engineering & Technology, 2010, 30(2): 220-233. |
[3] | 李春情, 马丽萍, 晏晓丹, 等. 脱硫石膏与碳酸铵反应过程及反应机理[J]. 环境工程学报, 2015, 9(7): 3441-3447. doi: 10.12030/j.cjee.20150759 |
[4] | WARYCH J, SZYMANOWSKI M. Optimum values of process parameters of the “wet limestone flue gas desulfurization system”[J]. Chemical Engineering & Technology, 2015, 25(4): 427-432. |
[5] | 贾锋平, 王刚. 我国二氧化硫排放现状分析[J]. 宁波节能, 2017(5): 20-28. |
[6] | 侯党社. 空气污染现状及咸阳市大气中SO2浓度变化研究[J]. 宝鸡文理学院学报(自然科学版), 2018, 38(2): 40-48. |
[7] | 陈滑维, 蔡浩洋, 张阳. 我国部分地区大气污染现状及其分布特征[J]. 中国环境管理干部学院学报, 2017, 27(4): 68-72. |
[8] | 桑绮, 乐园园, 徐晗. 火电厂大气污染物排放标准、现状及减排技术[J]. 浙江电力, 2011, 30(12): 42-46. doi: 10.3969/j.issn.1007-1881.2011.12.012 |
[9] | YE W Q, LI Y J, KONG L, et al. Feasibility of flue-gas desulfurization by manganese oxides[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(10): 3089-3094. doi: 10.1016/S1003-6326(13)62838-1 |
[10] | 唐杰林. 燃煤烟气脱硫脱硝技术研究进展[J]. 化工管理, 2016(32): 156-156. doi: 10.3969/j.issn.1008-4800.2016.32.122 |
[11] | 苗强. 燃煤脱硫技术研究现状及发展趋势[J]. 洁净煤技术, 2015, 21(2): 59-63. |
[12] | JIN D S, DESHWAL B R, PARK Y S, et al. Simultaneous removal of SO2 and NO by wet scrubbing using aqueous chlorine dioxide solution[J]. Journal of Hazardous Materials, 2006, 135(1): 412-417. |
[13] | NOLAN P S, REDINGER K E, AMRHEIN G T, et al. Demonstration of additive use for enhanced mercury emissions control in wet FGD systems[J]. Fuel Processing Technology, 2004, 85(6): 587-600. |
[14] | NYGAARD H G, KIIL S, JOHNSSON J E, et al. Full-scale measurements of SO2 gas phase concentrations and slurry compositions in a wet flue gas desulphurisation spray absorber[J]. Fuel, 2004, 83(9): 1151-1164. doi: 10.1016/j.fuel.2003.12.007 |
[15] | BAO J, YANG L, YAN J. Experimental study on demercurization performance of wet flue gas desulfurization system[J]. Chinese Journal of Chemistry, 2009, 27(11): 2242-2248. doi: 10.1002/cjoc.200990376 |
[16] | CóRDOB A, PATRICI A. Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs[J]. Fuel, 2015, 144: 274-286. doi: 10.1016/j.fuel.2014.12.065 |
[17] | GAO X, DING H L, DU Z, et al. Gas-liquid absorption reaction between (NH4)2SO3 solution and SO2 for ammonia-based wet flue gas desulfurization[J]. Applied Energy, 2010, 87(8): 2647-2651. doi: 10.1016/j.apenergy.2010.03.023 |
[18] | SHEN Z G, CHEN X, TONG M, et al. Studies on magnesium-based wet flue gas desulfurization process with oxidation inhibition of the byproduct[J]. Fuel, 2013, 105: 578-584. doi: 10.1016/j.fuel.2012.07.050 |
[19] | ZHU J, YE S C, BAI J, et al. A concise algorithm for calculating absorption height in spray tower for wet limestone-gypsum flue gas desulfurization[J]. Fuel Processing Technology, 2015, 129: 15-23. doi: 10.1016/j.fuproc.2014.07.002 |
[20] | 左莉娜, 贺前锋, 刘德华. 湿法烟气脱硫技术研究进展[J]. 环境工程, 2013, 31(S1): 412-416. |
[21] | 魏明俐, 杜延军, 刘松玉, 等. 磷矿粉稳定铅污染土的溶出特性研究[J]. 岩土工程学报, 2014, 36(4): 768-774. doi: 10.11779/CJGE201404024 |
[22] | 刘智安, 张知见, 刘启旺. 液相生化法烟气脱硫机理及动力学[J]. 应用基础与工程科学学报, 2011, 19(4): 644-652. doi: 10.3969/j.issn.1005-0930.2011.04.014 |
[23] | 王亮, 刘京春, 王力超, 等. 煤浆法烟气脱硫与Fe2+/Fe3+催化氧化脱硫工艺研究比较[J]. 科技信息, 2011(1): 30-30. |
[24] | 贾丽娟, 张冬冬, 殷在飞, 等. 磷矿浆脱硫新技术及工业应用[J]. 磷肥与复肥, 2016, 31(3): 39-41. doi: 10.3969/j.issn.1007-6220.2016.03.015 |
[25] | NIE Y X, LI S, WU C J, et al. Efficient removal of SO2 from flue gas with phosphate rock slurry and investigation of reaction mechanism[J]. Industrial & Engineering Chemistry Research, 2018, 57: 15138-15146. |
[26] | 李创, 张冬冬, 宁平, 等. 无机、有机添加剂对磷矿浆脱硫强化的影响[J]. 环境工程学报, 2018, 12(7): 150-157. |
[27] | LIU J, ZHANG P, LIU P, et al. Endothelial adhesion of targeted microbubbles in both small and great vessels using ultrasound radiation force[J]. Molecular Imaging, 2011, 11(1): 58-66. |
[28] | 曾意翔. 超声波技术应用现状浅析[J]. 技术与市场, 2015, 22(11): 144-144. doi: 10.3969/j.issn.1006-8554.2015.11.090 |
[29] | BHASARKAR J B, CHAKMA S, MOHOLKAR V S. Investigations in physical mechanism of the oxidative desulfurization process assisted simultaneously by phase transfer agent and ultrasound[J]. Ultrasonics Sonochemistry, 2015, 24: 98-106. doi: 10.1016/j.ultsonch.2014.11.008 |
[30] | 赵洪英, 蔡乐才. 超声波雾化器雾滴飞行时间的分析[J]. 四川理工学院学报(自然科学版), 2010, 23(1): 88-90. |
[31] | 张文俊, 武明亮, 郭丽潇, 等. 超声雾化频率与雾化粒径关系的实验研究[J]. 压电与声光, 2013, 35(6): 886-888. doi: 10.3969/j.issn.1004-2474.2013.06.031 |
[32] | 黄晖, 姚熹, 汪敏强, 等. 超声雾化系统的雾化性能测试[J]. 压电与声光, 2004, 26(1): 62-64. doi: 10.3969/j.issn.1004-2474.2004.01.019 |
[33] | MESSING G L, ZHANG S, JAYANTHI G V. Ceramic powder synthesis by spray pyrolysis[J]. Journal of the American Ceramic Society, 2010, 76(11): 2707-2726. |
[34] | PATIL P S. Versatility of chemical spray pyrolysis technique[J]. Materials Chemistry & Physics, 1999, 59(3): 185-198. |
[35] | 沈耀亚, 赵德智, 许凤军. 功率超声在化工领域中的应用现状和发展趋势措施[J]. 现代化工, 2000, 20(10): 14-18. doi: 10.3321/j.issn:0253-4320.2000.10.003 |
[36] | CAMARA C G, HOPKINS S D, SUSLICK K S. Upper bound for neutron emission from sonoluminescing bubbles in deuterated acetone[J]. Physical Review Letters, 2007, 98(6): 1-4. |
[37] | CABANAS-POLO S, SUSLICK K S, SANCHEZ-HERENCIA A J. Effect of reaction conditions on size and morphology of ultrasonically prepared Ni(OH)2 powders[J]. Ultrasonics Sonochemistry, 2011, 18(4): 901-906. doi: 10.1016/j.ultsonch.2010.11.017 |
[38] | 刘卉卉. 低浓度SO2磷矿浆液相催化氧化净化研究[D]. 昆明: 昆明理工大学, 2005. |