山西省太原生态环境监测中心,太原 030000
Taiyuan Ecological Environment Monitoring Center of Shanxi Province, Taiyuan 030000, China
排放控制提供参考。
. In order to comprehensively study the emission characteristics and control technology of SO
test methods were compared and analyzed based on experimental research. PENTOL SO
removal rules by existing equipment were studied. The results showed that, SO
and higher than that of coal-fired power plants, which was mainly related to the sulfur contents in sintering (pellet) engineering materials and fuels. The total SO
removal efficiency of the whole flue gas control process was 79.93%~93.75%, and the SO
removal characteristic of the combination of circulating fluidized bed dry desulfurization-bag dust collector was obviously better than that of limeston-gypsum wet desulfurization. For high SO
removal was made. The engineering experiments showed that, SO
total removal efficiency of the whole flue gas control process increased from 79.70% to 96.31%~99.25%, of which the SO
when jet (mole ratio of (0.5 + 0.5):1) occurred before and after electric dust collector. NO
and particulate matter emissions met the requirements of ultra-low emission limits. This study can provide reference for the SO
emission control in the sintering (pellet) flue gas.
.
measurement system prescribed by GB/T 21508-2008
concentration test results
sampling and measurement sites
at different operating conditions
emission concentration and total removal rate
by wet electrostatic precipitator
Test results of pollutant discharge
[1] | 杨用龙, 苏秋凤, 张杨, 等. 燃煤电站典型超低排放工艺的SO3脱除性能及排放特性[J]. 中国电机工程学报, 2019, 39(10): 2962-2969. |
[2] | 李小龙, 李军状, 段玖祥, 等. 燃煤电厂烟气中SO3协同控制情况及排放现状研究[J]. 中国电力, 2019, 32(6): 1-8. doi: 10.3969/j.issn.1007-3361.2019.06.001 |
[3] | 李兰新. 燃煤硫氧化物排放及环境影响[J]. 煤炭与化工, 2018, 41(4): 128-130. |
[4] | 竹涛, 张书庆, 郭娜. 火电行业SO3控制技术研究进展[J]. 环境工程, 2018, 36(2): 109-112. |
[5] | 李小龙, 段玖祥, 李军状, 等. 燃煤电厂烟气中SO3控制技术及测试方法探讨[J]. 环境工程, 2017, 35(5): 98-102. |
[6] | 文少飞, 李杰, 商克峰, 等. O3氧化- ${\rm{SO}}_3^{2 - }$ 还原燃煤烟气脱硝[J]. 环境工程学报, 2017, 11(9): 5071-5077. doi: 10.12030/j.cjee.201609177 |
[7] | 刘宇, 单广波, 闫松, 等. 燃煤锅炉烟气中SO3的生成、危害及控制技术研究进展[J]. 环境工程, 2016, 34(11): 93-97. |
[8] | 蒋海涛, 蔡兴飞, 付玉玲, 等. 燃煤电厂SO3形成、危害及控制技术[J]. 发电设备, 2013, 27(5): 366-368. doi: 10.3969/j.issn.1671-086X.2013.05.018 |
[9] | 中国环境保护产业协会电除尘委员会. 燃煤电厂烟气超低排放技术[M]. 北京: 中国电力出版社, 2015. |
[10] | 赵毅, 韩立鹏. 超低排放燃煤电站三氧化硫的迁移和排放特征[J]. 环境科学学报, 2019, 13(7): 1-8. |
[11] | 刘仕尧, 黄家玉, 罗锦洪, 等. 富氧燃烧方式下烟气中SO3和Hg的排放及控制研究进展[J]. 过程工程学报, 2019, 19(增刊1): 115-122. |
[12] | 刘含笑, 陈招妹, 王少权, 等. 燃煤电厂SO3排放特征及其脱除技术[J]. 环境工程学报, 2019, 13(5): 1128-1138. doi: 10.12030/j.cjee.201812137 |
[13] | 朱法华, 李军状. 我国燃煤电厂SO3和可凝结颗粒物控制存在问题与建议[J]. 环境影响评价, 2019, 41(3): 1-5. |
[14] | 王圣. 燃煤电厂非传统大气污染物控制展望[J]. 中国电力, 2018, 51(8): 173-179. |
[15] | 朱法华, 李军状, 马修元, 等. 清洁煤电烟气中非常规污染物的排放与控制[J]. 电力科技与环保, 2018, 34(1): 23-26. doi: 10.3969/j.issn.1674-8069.2018.01.006 |
[16] | 胡冬, 王海刚, 郭婷婷, 等. 燃煤电厂烟气SO3控制技术的研究及进展[J]. 科学技术与工程, 2015, 15(35): 92-99. doi: 10.3969/j.issn.1671-1815.2015.35.017 |
[17] | 刘勇. 碱基吸收剂喷射脱除燃煤烟气中SO3的实验研究[D]. 杭州: 浙江大学, 2018. |
[18] | 陈鹏. 钙基吸收剂脱除燃煤烟气中SO3的研究[D]. 济南: 山东大学, 2011. |
[19] | FLEIG D, ANDERSSON K, NORMANN F, et al. SO3 formation under oxyfuel combustion conditions[J]. Industrial & Engineering Chemistry Research, 2011, 50(14): 8505-8514. |
[20] | EENER T C, KHANG S J. Kinetics of the sodium bicarbonate-sulfur dioxide reaction[J]. Chemical Engineering Science, 1993, 48(16): 2859-2865. doi: 10.1016/0009-2509(93)80032-L |
[21] | ZHENG C H, WANG Y F, LIU Y, et al. Formation, transformation, measurement, and control of SO3 in coal-fired power plants[J]. Fuel, 2019, 33(9): 327-346. doi: 10.1016/j.fuel.2018.12.039 |
[22] | 赵羚杰. 中国钢铁行业大气巧染物排放清单及碱排成本研究[D]. 杭州: 浙江大学, 2016. |
[23] | 张殿印, 李惊涛. 冶金烟气治理新技术手册[M]. 北京: 化学工业出版社, 2018. |
[24] | 杨金保, 朱辛州, 刘金英, 等. 首钢球团烟气脱硫工艺及设备的优化与改造[J]. 烧结球团, 2015, 40(6): 23-26. |
[25] | 刘金英, 杨金保, 朱辛州, 等. 脱硫除尘一体化技术在首钢球团厂的应用[J]. 烧结球团, 2015, 40(3): 53-56. |
[26] | 束云峰, 赵克宇. 石灰-石膏法烟气脱硫在高硫矿氧化球团生产中的运用[J]. 烧结球团, 2013, 38(6): 52-54. |
[27] | 王定帮, 雷鸣, 余福胜, 等. 燃煤机组SO3迁移规律及排放特性试验[J]. 热力发电, 2018, 47(11): 96-101. |
[28] | 杨玮, 孙彬彬, 王雪, 等. 山西某电厂燃煤烟气SO3与颗粒物排放特征[J]. 环境工程, 2018, 36(1): 83-87. doi: 10.11835/j.issn.1674-4764.2018.01.012 |
[29] | 杨丁, 陈永强, 陈威祥, 等. SO3采样技术改进及烟气处理设备SO3脱除能力测试[J]. 中国电力, 2018, 51(7): 157-161. |
[30] | 陈鹏芳, 朱庚富, 张俊翔. 基于实测的燃煤电厂烟气协同控制技术对SO3去除效果的研究[J]. 环境污染与防治, 2017, 39(3): 232-235. |
[31] | 潘丹萍, 吴昊, 鲍静静, 等. 电厂湿法脱硫系统对烟气中细颗粒物及SO3酸雾脱除作用研究[J]. 中国电机工程学报, 2016, 36(16): 4356-4362. |
[32] | 魏宏鸽, 程雪山, 马颜斌, 等. 燃煤烟气中SO3的产生与转化及其抑制对策[J]. 发电与空调, 2012, 33(2): 1-4. doi: 10.3969/J.ISSN.2095-3429.2012.02.001 |
[33] | 许瑶, 李钧. 石灰石-石膏湿法脱硫装置中影响脱硫效率的关键设计参数[J]. 工业安全与环保, 2015, 41(6): 98-99. doi: 10.3969/j.issn.1001-425X.2015.06.027 |
[34] | SRIVASTAVA R, MILLER C, ERICKSON C, et al. Emissions of sulfur trioxide from coal-fired power plants[J]. Journal of the Air & Waste Management Association, 2004, 54(6): 750-762. |
[35] | 莫华, 朱杰, 黄志杰, 等. 超低排放下不同湿法脱硫技术脱除SO3效果测试与分析[J]. 中国电力, 2017, 50(3): 46-51. doi: 10.3969/j.issn.1007-3361.2017.03.011 |
[36] | 蒋路漫, 周振, 俞杰, 等. 烟气脱硫中亚硫酸钙铁锰复合催化氧化优化[J]. 环境工程学报, 2017, 11(12): 6332-6338. doi: 10.12030/j.cjee.201702031 |
[37] | YANG Z D, ZHENG C H, ZHANG X F, et al. Highly efficient removal of sulfuric acid aerosol by a combined wet electrostatic precipitator[J]. RSC Advances, 2018, 8(1): 59-66. doi: 10.1039/C7RA11520B |
[38] | 张雪峰, 杨正大, 李响, 等. SO3对高湿静电场中电晕放电的影响机制研究[J]. 中国环境科学, 2017, 37(9): 3268-3275. doi: 10.3969/j.issn.1000-6923.2017.09.008 |
[39] | YANG Z D, ZHENG C H, ZHANG X F, et al. Sulfuric acid aerosol formation and collection by corona discharge in a wet electrostatic precipitator[J]. Energy & Fuels, 2017, 31(8): 8400-8406. |
[40] | 舒喜, 田原润, 惠润堂. SO3在燃煤电厂各设备中形成和脱除现状研究[J]. 环境科学与技术, 2017, 40(11): 121-126. |
[41] | 姚璐, 刘清才, 方诗惠, 等. 半干法烧结烟气脱硫灰的氧化改性[J]. 环境工程学报, 2016, 10(6): 3147-3151. doi: 10.12030/j.cjee.201501149 |
[42] | 陈奎续. 电袋复合除尘+湿法脱硫工艺脱除多污染物的效果研究[J]. 环境污染与防治, 2018, 40(4): 398-403. |
[43] | 陈奎续. 电袋复合除尘器协同脱除Hg及SO3[J]. 环境工程学报, 2017, 11(11): 5937-5942. doi: 10.12030/j.cjee.201703113 |