2.教育部生物膜法水质净化及利用工程中心,马鞍山 243002
1.School of Energy and Environment, Anhui University of Technology, Maanshan 243002, China
2.Engineering Research Center of Water Purification and Utilization Technology based on Biofilm Process, Ministry of Education, Maanshan 243002, China
为探究在复合污染条件下介孔吸附材料对砷、磷的去除效果,通过水热合成法制备镧金属改性介孔吸附材料(La-MCM-41),采用X-射线衍射(XRD)、比表面积测定(BET)、扫描电镜(SEM)等分析方法对改性前后的介孔吸附剂进行了表征;研究了介孔吸附剂在不同吸附体系中对砷、磷的降解效果、等温线及动力学。结果表明:La-MCM-41仍具有长程有序的六方相介孔结构,BET比表面积、总孔容均减小,平均孔径有所增加;介孔吸附剂在单独吸附体系下对砷、磷的吸附量大于同步吸附体系,且均符合二级反应动力学。通过分析可知,在2种体系下,改性后的介孔吸附剂极大地提高了对砷、磷的吸附量,是一种经济高效的吸附材料。
In this study, La doped mesoporous material (La-MCM-41) was synthesized through the hydrothermal method and used to remove arsenic and phosphorus under combined pollution conditions. The X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and scanning electron microscope (SEM) were employed to characterize the pristine mesoporous absorbent and La-MCM-41. In different systems, the arsenic and phosphorus adsorption capacity, isotherm and kinetics of by La-MCM-41 were studied. The results show that compared with pristine mesoporous absorbent, La-MCM-41 maintained a long range-ordered hexagonal mesoporous structure, and its BET specific surface area and total pore volume decreased, while its average pore diameter increased. Moreover, the adsorption capacity of arsenic or phosphorus in adsorption single system by La-MCM-41 was greater than that in the synchronous adsorption system, and both adsorption systems could be well described by the second order kinetics. As a cost-effective adsorbent of the modified mesoporous material, its adsorption capacity of arsenic and phosphorus was greatly improved under two systems.
.
MCM-41、La-MCM-41的XRD图
X-ray diffraction patterns of MCM-41 and La-MCM-41
MCM-41、La-MCM-41的氮气吸附脱附等温线
Nitrogen adsorption/desorption isotherms of MCM-41 and La-MCM-41
MCM-41和La-MCM-41的SEM和EDS图
SEM images and EDS spectra of MCM-41 and La-MCM-41
MCM-41和La-MCM-41对As(Ⅴ)和P吸附的影响
Effect of MCM-41 and La-MCM-41 on As(Ⅴ) and P adsorption
La-MCM-41对As(Ⅴ)和P的吸附动力学
Adsorption kinetics of As(Ⅴ) and P onto La-MCM-41
Arrhenius equation fitting
La-MCM-41对As(Ⅴ)和P的吸附等温线
Adsorption isotherms of As(Ⅴ) and P onto La-MCM-41
[1] | ZHOU Q, XI S H. A review on arsenic carcinogenesis: Epidemiology, metabolism, genotoxicity and epigenetic changes[J]. Regulatory Toxicology and Pharmacology, 2018, 99: 78-88. doi: 10.1016/j.yrtph.2018.09.010 |
[2] | HOMERO H F, PARIONA N, MARTIN H T, et al. Concrete/maghemite nanocomposites as novel adsorbents for arsenic removal[J]. Journal of Molecular Structure, 2018, 1171: 9-16. doi: 10.1016/j.molstruc.2018.05.078 |
[3] | KARDIA R M, FATIMA P R, RANGEL M R. Adsorption of arsenic onto an environmental friendly goethite-polyacrylamide composite[J]. Journal of Molecular Liquids, 2018, 264: 253-260. doi: 10.1016/j.molliq.2018.05.063 |
[4] | KOILRAJ P, TAKAKI Y, SASAKI K. Adsorption characteristics of arsenate on colloidal nanosheets of layered double hydroxide[J]. Applied Clay Science, 2016, 134: 110-119. doi: 10.1016/j.clay.2016.06.002 |
[5] | ANTELO J, ARCE F, FIOL S. Arsenate and phosphate adsorption on ferrihydrite nanoparticles: Synergetic interaction with calcium ions[J]. Chemical Geology, 2015, 410(2): 53-62. |
[6] | GOSCIANSKA J, PTASZKOWSKA-KONIARZ M, FRANKOWSKI M, et al. Removal of phosphate from water by lanthanum-modified zeolites obtained from fly ash[J]. Journal of Colloid and Interface Science, 2018, 513: 72-81. doi: 10.1016/j.jcis.2017.11.003 |
[7] | ZHANG M, GAO B, YAO Y, et al. Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition[J]. Chemosphere, 2013, 92(8): 1042-1047. doi: 10.1016/j.chemosphere.2013.02.050 |
[8] | BOUJELBEN N. phosphorus removal from aqueous solution using iron coated natural and engineered sorbents[J]. Journal of Hazardous Materials, 2008, 151(1): 103-110. doi: 10.1016/j.jhazmat.2007.05.057 |
[9] | REDFIELD R J. Comment on " A bacterium that can grow by using arsenic instead of phosphorus”[J]. Science, 2011, 332(1): 1163-1166. |
[10] | 邹强, 刘芳, 杨剑虹. 紫色土中砷、磷的吸附-解吸和竞争吸附[J]. 应用生态学报, 2009, 20(6): 1383-1389. |
[11] | LOGANATHAN P, VIGNESWARAN S, KANDASAMY J, et al. Removal and recovery of phosphate from water using sorption[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(8): 847-907. doi: 10.1080/10643389.2012.741311 |
[12] | DUENAS J F, AlONSO J R, REY F, et al. Characterisation of phosphorous forms in wastewater treatment plants[J]. Journal of Hazardous Materials, 2003, 97(1/2/3): 193-205. |
[13] | TENG W, WU Z X, FAN J W, et al. Ordered mesoporous earbons and their corresponding column for highly efficient removal of microcystin-LR[J]. Energy & Environmental Science, 2013, 6(9): 2765-2776. |
[14] | HUANG W, ZHANG Y, LI D. Adsorptive removal of phosphate from water using mesoporous materials: A review[J]. Journal of Environmental Management, 2017, 193: 470-482. |
[15] | SUBHAN F, LIU B S, ZHANG Y, et al. High desulfurization characteristic of lanthanum loaded mesoporous MCM-41 sorbents for diesel fuel[J]. Fuel Processing Technology, 2012, 97(3): 71-78. |
[16] | CHUTIA P, KATO S, KOJIMA T, et al. Arsenic adsorption from aqueous solution on synthetic zeolites[J]. Journal of Hazardous Materials, 2009, 162(1): 440-447. doi: 10.1016/j.jhazmat.2008.05.061 |
[17] | VASUDEVAN S, LAKSHMI J. The adsorption of phosphate by graphene from aqueous solution[J]. RSC Advances, 2012, 2(12): 5234. doi: 10.1039/c2ra20270k |
[18] | 何素芳. 铝改性SBA-15介孔材料在砷吸附去除中的应用及吸附机理[D]. 昆明: 昆明理工大学, 2015. |
[19] | ZHANG J, SHEN Z, SHAN W, et al. Adsorption behavior of phosphate on lanthanum(III)-coordinated diamino-functionalized 3D hybrid mesoporous silicates material[J]. Journal of Hazardous Materials, 2011, 186(1): 76-83. doi: 10.1016/j.jhazmat.2010.10.076 |
[20] | ZHAN W C, LU G Z, GUO Y L, et al. Synthesis of Ln-doped MCM-41 mesoporous materials and their catalytic performance in oxidation of styrene[J]. Journal of Rare Earths, 2008, 26(1): 59-65. doi: 10.1016/S1002-0721(08)60038-1 |
[21] | YANG J P, CHEN W Y, SHEN D K, et al. Controllable fabrication of dendritic mesoporous silica-carbon nanospheres for anthracene removal[J]. Journal of Materials Chemistry A, 2014, 2(29): 11045-11048. doi: 10.1039/c4ta01516a |
[22] | 王宇红, 袁联群, 俞磊, 等. 镧、钒取代MCM-41分子筛的结构表征及其在苯酚羟基化反应中的催化性能[J]. 化工学报, 2010, 61(10): 2565-2572. |
[23] | LI X, LI B, XU J, et al. Synthesis and characterization of Ln-ZSM-5/MCM-41 (Ln = La, Ce) by using kaolin as raw material[J]. Applied Clay Science, 2010, 50(1): 81-86. doi: 10.1016/j.clay.2010.07.006 |
[24] | 张芙蓉. 砷磷在铁锰/铝锰复合氧化物表面的同步吸附特性及竞争作用规律[D]. 咸阳: 西北农林科技大学, 2017. |
[25] | ZHU N, YAN T, QIAO J, et al. Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: Adsorption mechanism and depleted adsorbent utilization[J]. Chemosphere, 2016, 164: 32-40. doi: 10.1016/j.chemosphere.2016.08.036 |
[26] | 曹秉帝, 徐绪筝, 王东升, 等. 三价铁改性活性炭对水中微量砷的吸附特性[J]. 环境工程学报, 2016, 10(5): 2321-2328. |
[27] | LEDUC J F, LEDUC R, CABANA H. Phosphate adsorption onto chitosan-based hydrogel microspheres[J]. Adsorption Science & Technology, 2014, 32(7): 557-570. |
[28] | LIU J, QI Z, CHEN J, et al. Phosphate adsorption on hydroxyl-iron-lanthanum doped activated carbon fiber[J]. Chemical Engineering Journal, 2013, 215(2): 859-867. |
[29] | 王宇, 高宝玉, 岳文文, 等. 改性玉米秸秆对水中磷酸根的吸附动力学研究[J]. 环境科学, 2008, 29(3): 703-708. doi: 10.3321/j.issn:0250-3301.2008.03.027 |
[30] | 茹春云. 典型阴离子在纳米铁表面的竞争吸附模型研究[D]. 北京: 中国地质大学, 2013. |
[31] | MALEKIAN R, ABEDI-KOUPAI J, ESLAMIAN S S, et al. Ion-exchange process for ammonium removal and release using natural Iranian zeolite[J]. Applied Clay Science, 2011, 51(3): 323-329. doi: 10.1016/j.clay.2010.12.020 |
[32] | TANG D, ZHANG G. Efficient removal of fluoride by hierarchical Ce-Fe bimetal oxides adsorbent: Thermodynamics, kinetics and mechanism[J]. Chemical Engineering Journal, 2016, 283: 721-729. doi: 10.1016/j.cej.2015.08.019 |