西南交通大学地球科学与环境工程学院,成都 610031
Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China
为探究生活垃圾焚烧发电厂渗滤液膜浓缩液回喷炉膛对焚烧系统的影响,以上海市某垃圾焚烧厂的膜浓缩液为对象,利用马弗炉模拟回喷过程的不同温度条件,通过对烧干后固相物质的粒度测定和成分分析,研究其理化特性及物质转化规律,并分析Cl、S等产生腐蚀性气体的主要元素的变化规律。结果表明:850 ℃烧干浓缩液后形成的固体颗粒粒径主要集中在30~365 μm,质量分数达74.53%,粒径小于30 μm和大于365 μm的颗粒分别占24.89%和0.58%。浓缩液烧干后的固体几乎都是盐分,它们的结晶相以氯盐、钙盐(CaCl
的结晶度明显增高。浓缩液烧干后的固相物质中以O、Na、S、Cl、Mg、Ca、K等元素居多,元素含量变化趋势的转折点主要发生在900 ℃。研究表明,烟气系统的负荷设计上应充分考虑浓缩液回喷所带来的增量,设备维护上应注重对Cl腐蚀的防护,最佳的回喷温度应控制在900 ℃左右。
In order to explore the impact of the membrane concentrated leachate spraying into the incinerators on the incineration system in municipal solid waste (MSW) incineration power plants, the experiments was conducted with a muffle furnace to simulate different temperatures during spraying process of membrane concentrated leachate in a MSW incineration power plant in Shanghai. The size distribution, microstructure, composition and content of dried solid matters were characterized by particle size, X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) analysis. The results showed that the particle size of solid matters produced at 850 ℃ were distributed in 30~365 μm, and their mass percentage reached 74.53%, the particles with size less than 30 μm and high than 365 μm accounted for 24.89% and 0.58%, respectively. The solid matters after drying out of concentrated leachate were almost salt, and their crystal phase mainly consisted of CaCl
increased obviously with the increase of temperature. O, Na, Mg, Cl, Ca, K were the main elements in the solid matters, and a turning point in element variational trends occurred at 900 ℃. The study indicated that loading increment by concentrate spraying should be given full consideration in designing the gas system, the equipment maintenance should pay attention to chlorine corrosion, and the optimum spray temperature could be controlled at about 900 ℃.
.
Flow chart of leachate treatment process
Crystalline power after concentrate drying out
Particle size distribution of crystalline power after concentrate drying out
XRD patterns of solid matters after drying out concentrate at different temperatures
浓缩液在不同温度下烧干后固相物质的SEM及EDS图谱
SEM images and EDS spectra of solid matters after drying out concentrate at different temperatures
浓缩液不同温度下烧干后固相物质的元素含量比值变化
Elements content ratio in solid matters after drying out concentrate at different temperatures
Element type and atomic percent in concentrate dried out at different temperatures
[1] | HE R, WEI X M, TIAN B H, et al. Characterization of a joint recirculation of concentrated leachate and leachate to landfills with a microaerobic bioreactor for leachate treatment[J]. Waste Management, 2015, 46: 380-388. doi: 10.1016/j.wasman.2015.08.006 |
[2] | HUNCE S Y, AKGUL D, DEMIR G, et al. Solidification/stabilization of landfill leachate concentrate using different aggregate materials[J]. Waste Management, 2012, 32(7): 1394-1400. doi: 10.1016/j.wasman.2012.03.010 |
[3] | 郭冏. 渗沥液回喷焚烧炉的可行性探讨[J]. 环境卫生工程, 2013, 21(4): 22-23. doi: 10.3969/j.issn.1005-8206.2013.04.009 |
[4] | ZHANG J, XIAN P, YANG L H, et al. Analysis of degradation by aerobic recharge for concentrated leachate[J]. Applied Mechanics & Materials, 2014, 675-677: 483-488. |
[5] | TALALAJ I A, BIEDKA P. Impact of concentrated leachate recirculation on effectiveness of leachate treatment by reverse osmosis[J]. Ecological Engineering, 2015, 85(1): 185-192. |
[6] | BIRCHLER D R, MILKE M W, MARKS A L, et al. Landfill leachate treatment by evaporation[J]. Journal of Environmental Engineering, 1994, 120(5): 1109-1131. doi: 10.1061/(ASCE)0733-9372(1994)120:5(1109) |
[7] | 刘导明, 张璐, 王磊, 等. 机械蒸发处理垃圾渗滤液的试验研究[J]. 工业安全与环保, 2018, 44(4): 89-91. doi: 10.3969/j.issn.1001-425X.2018.04.022 |
[8] | YUE D B, XU Y D, MAHAR R B, et al. Laboratory-scale experiments applied to the design of a two-stage submerged combustion evaporation system[J]. Waste Management, 2007, 27(5): 704-710. doi: 10.1016/j.wasman.2006.04.017 |
[9] | LUKIC N, DIEEZEL L L, FROBA A P, et al. Economical aspects of the improvement of a mechanical vapour compression desalination plant by dropwise condensation[J]. Desalination, 2010, 264(1/2): 173-178. |
[10] | XU J, LONG Y Y, SHEN D S, et al. Optimization of Fenton treatment process for degradation of refractory organics in pre-coagulated leachate membrane concentrates[J]. Journal of Hazardous Materials, 2016, 323: 674-680. |
[11] | WANG H W, LI X Y, HAO Z P, et al. Transformation of dissolved organic matter in concentrated leachate from nanofiltration during ozone-based oxidation processes (O3, O3/H2O2 and O3/UV)[J]. Journal of Environmental Management, 2017, 191: 244-251. doi: 10.1016/j.jenvman.2017.01.021 |
[12] | HILLES A H, ABU AMR S S, HUSSEIN R A, et al. Optimization of leachate treatment using persulfate/H2O2 based advanced oxidation process: case study: Deir El-Balah Landfill Site, Gaza Strip, Palestine[J]. Water Science and Technology, 2016, 73(1): 102-112. doi: 10.2166/wst.2015.468 |
[13] | FERNANDES A, PACHECO M J, CIRíACO L, et al. Review on the electrochemical processes for the treatment of sanitary landfill leachates: Present and future[J]. Applied Catalysis B: Environmental, 2015, 176-177: 183-200. doi: 10.1016/j.apcatb.2015.03.052 |
[14] | WANG Y J, LI X Y, ZHEN L M, et al. Electro-Fenton treatment of concentrates generated in nanofiltration of biologically pretreated landfill leachate[J]. Journal of Hazardous Materials, 2012, 229-230(3): 115-121. |
[15] | 陈新芳. DTRO处理垃圾渗滤液浓缩液的中试研究[J]. 工业用水与废水, 2018, 49(3): 41-44. doi: 10.3969/j.issn.1009-2455.2018.03.009 |
[16] | 管锡珺, 赵亚鹏, 智雪娇, 等. 垃圾填埋场反渗透浓缩液回喷至附近垃圾焚烧厂焚烧研究[J]. 环境工程, 2016, 34(5): 123-125. |
[17] | 赵晓峰. 渗滤液回喷处理技术在垃圾焚烧发电厂的应用[J]. 华电技术, 2015, 37(1): 64-68. doi: 10.3969/j.issn.1674-1951.2015.01.022 |
[18] | ZHANG Q Q, TIAN B H, ZHANG X, et al. Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants[J]. Waste Management, 2013, 33(11): 2277-2286. doi: 10.1016/j.wasman.2013.07.021 |
[19] | LI J Y, ZHAO L, QIN L L, et al. Removal of refractory organics in nanofiltration concentrates of municipal solid waste leachate treatment plants by combined Fenton oxidative-coagulation with photo-Fenton processes[J]. Chemosphere, 2016, 146: 442-449. doi: 10.1016/j.chemosphere.2015.12.069 |
[20] | 王庆国, 乐晨, 卓瑞锋, 等. 电化学氧化法处理垃圾渗滤液纳滤浓缩液[J]. 环境工程学报, 2015, 9(3): 1308-1312. |
[21] | 熊祖鸿, 鲁敏, 胡大为, 等. 广东省典型生活垃圾焚烧飞灰的物化及固化特性[J]. 环境化学, 2014, 33(7): 1173-1179. |
[22] | ZHAO Y C, SONG L J, LI G J. Chemical stabilization of MSW incinerator fly ashes[J]. Journal of Hazardous Materials, 2002, 95(1/2): 47-63. |
[23] | HELENA R, AGNIESZKA C, SILVIE H K, et al. Enrichment and distribution of 24 elements within the sub-sieve particle size distribution ranges of fly ash from wastes incinerator plants[J]. Journal of Environmental Management, 2017, 203: 1169-1177. |
[24] | QIU Q L, JIANG X G, CHEN Z L, et al. Microwave-assisted hydrothermal treatment with soluble phosphate added for heavy metals solidification in MSWI fly ash[J]. Energy & Fuels, 2017, 31(5): 5222-5232. |
[25] | LIU Y S, ZHENG L T, LI X D, et al. SEM/EDS and XRD characterization of raw and washed MSWI fly ash sintered at different temperatures[J]. Journal of Hazardous Materials, 2009, 162(1): 161-173. doi: 10.1016/j.jhazmat.2008.05.029 |
[26] | NAM S, NAMKOONG W. Irradiation effect on leaching behavior and form of heavy metals in fly ash of municipal solid waste incinerator[J]. Journal of Hazardous Materials, 2012, 199-200: 400-447. |
[27] | 姜永海, 席北斗, 李秀金, 等. 垃圾焚烧飞灰熔融固化处理过程特性分析[J]. 环境科学, 2005, 26(3): 176-179. doi: 10.3321/j.issn:0250-3301.2005.03.036 |
[28] | 许明磊. 垃圾焚烧过程受热面积灰烧结特性实验研究[D]. 杭州: 浙江大学, 2007. |
[29] | SHIN M S, KIM H S, JANG D S, et al. A numerical and experimental study on a high efficiency cyclone dust separator for high temperature and pressurized environments[J]. Applied Thermal Engineering, 2005, 25: 1821-1835. |
[30] | 王海泉. 生活垃圾焚烧处理电厂运行分析[D]. 广州: 华南理工大学, 2011. |
[31] | 白贤祥, 张玉刚. 生活垃圾焚烧厂余热锅炉水冷壁高温腐蚀治理研究[J]. 环境卫生工程, 2018, 26(3): 68-74. doi: 10.3969/j.issn.1005-8206.2018.03.021 |
[32] | 张焕亨. 李坑垃圾焚烧高温腐蚀试验研究[D]. 广州: 华南理工大学, 2013. |
[33] | LI Q H, ZHANG Y G, MENG A H, et al. On-the-spot test of the slagging in a grate-circulating bed garbage incinerator superheater[J]. Journal of Engineering for Thermal Energy & Power, 2012, 27(1): 55-60. |
[34] | XU M L, YAN J H, MA Z Y, et al. Particularities concerning sintered ash deposits along flue ways of CFB waste incinerators[J]. Power Engineering, 2006, 26(4): 550-553. |
[35] | NIELSEN H P. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers[J]. Progress in Energy & Combustion Science, 2000, 26(3): 283-298. |
[36] | 潘葱英. 垃圾焚烧炉内过热器区HCI高温腐蚀研究[D]. 杭州: 浙江大学, 2004. |