王莎1,
兰兰1,
李晓玲1,
芦昭霖1
1.长安大学环境科学与工程学院,西安 710064
基金项目: 国家自然科学基金资助项目51778057国家自然科学基金资助项目(51778057)
Ammonia production mechanism in a simultaneous occurrence of sulfur autotrophic and heterotrophic mixed nitrite denitrification process
LIU Shuang1,,WANG Sha1,
LAN Lan1,
LI Xiaoling1,
LU Zhaolin1
1.School of Environmental Science and Engineering, Chang′an University, Xi′an 710064, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:为研究亚硝酸盐型碳、氮、硫同步脱除系统的特性,采用SBBR,以亚硝酸盐、硫化物及乙酸钠为基质,探索6种进水COD/N及5种进水S/N下碳、硫混合亚硝酸盐反硝化过程铵的生成机制。结果表明:在进水COD/N高于2、S/N高于1时,NO2--N去除率高达99%;同时,当氧化还原电位(ORP)低于-400 mV时,会出现铵浓度明显升高现象,在此条件下,进水COD/N不变时,较高的S/N会促进铵的生成;控制进水S/N不变,COD/N为3时铵浓度升高最为明显。微生物分析结果表明,该碳、氮、硫混合体系中同时存在硫自养反硝化、异养反硝化及亚硝酸盐异化还原为铵等过程,碳、硫混合亚硝酸盐反硝化过程铵的生成机制可能是低氧化还原电位和过量电子供体存在的情况下亚硝酸盐异化还原为铵的过程。
关键词: 混合反硝化/
异化亚硝酸盐还原为铵/
COD/N/
S/N
Abstract:In this study, the ammonia production mechanism by a simultaneous autotrophic and heterotrophic (mixotrophic) denitrification process was identified in a sequencing batch biofilm reactor(SBBR) fed with nitrite, sulfide and sodium acetate supplementation, and six different COD/N ratios and five different S/N ratios were designed for this purpose. The result showed that the nitrite removal efficiency was up to 99% when COD/N ratio was higher than 2 and S/N ratio was higher than 1. The increase of ammonia concentration occurred when ORP was lower than -400 mV, and high S/N ratio could enhance the ammonia production with a constant COD/N ratio in influent. While at constant S/N ratio and COD/N ratio of 3, a significant increase of ammonia yield occurred. The microbial analysis showed that sulfur autotrophic denitrification, heterotrophic denitrification as well as dissimilatory nitrite reduction to ammonia were coexisted in this carbon-nitrogen-sulfur synchronous mixing system, in which the ammonia production mechanism may be the process of dissimilatory nitrite reduction to ammonia in the presence of low redox potential and excess electron donor.
Key words:mixotrophic denitrification/
dissimilatory nitrite reduction to ammonia/
COD/N/
S/N.
[1] | CHEN C, WANG A, REN N, et al. Optimal process pattern for simultaneous sulfur, nitrogen and carbon removal[J]. Water Science & Technology, 2009, 59(4): 833-837. |
[2] | 陈川. EGSB同步脱硫反硝化的运行效能和颗粒污泥的特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2007. |
[3] | WONG B T, |
[4] | 蔡靖, 郑平. 氮素基质类型对同步厌氧生物脱氮除硫工艺性能的影响[J]. 高校化学工程报, 2009, 26(5): 864-870. |
[5] | YIN Z X, XIE L, CUI X W, et al. Effective carbon and nitrogen removal with reduced sulfur oxidation in an anaerobic baffled reactor for fresh leachate treatment[J]. Journal of Bioscience & Bioengineering, 2016, 123(1): 84-90. |
[6] | DOLEJS P, PACLíK L, MACA J, et al. Effect of S/N ratio on sulfide removal by autotrophic denitrification[J]. Applied Microbiology and Biotechnology, 2015, 99(5): 2383-2392. |
[7] | GUVEN D, DAPENA A, KARTAL B, et al. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria[J]. Applied and Environmental Microbiology, 2005, 71(2): 1066-1071. |
[8] | KARTAL B, KUYPERS M M M, LAVIK G, et al. Anammox bacteria disguised as denitrifiers: Nitrate reduction to dinitrogen gas via nitrite and ammonium[J]. Environmental Microbiology, 2007, 9(3): 635-642. |
[9] | KARTAL B, RATTRAY J, NIFTRIK L A V, et al. Candidatus “Anammoxoglobuspropionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J]. Systematic and Applied Microbiology, 2007, 30(1): 39-49. |
[10] | SHU D T, HE Y L, YUE H, et al. Metagenomic insights into the effects of volatile fatty acids on microbial community structures and functional genes in organotrophic anammox process[J]. Bioresource Technology, 2015, 196(11): 621-633. |
[11] | WINKLER M K H, KLEEREBEZEM R, LOOSDRECHT M C M V. Integration of anammox into the aerobic granular sludge process for main stream wastewater treatment at ambient temperatures[J]. Water Research, 2012, 46(1): 136-144. |
[12] | 殷士学, 陆驹飞. 硝酸异化还原成铵的微生物学过程[J]. 微生物学通报, 1997, 24(3): 170-173. |
[13] | 陈韬, 邹子介, 剑沣. 碳源对生物滞留系统中硝酸盐异化还原成铵的影响研究[J]. 环境工程, 2017, 35(10): 71-75. |
[14] | HAMILTON B S K. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways[J]. Front Ecological Environment, 2007, 5(2): 89-96. |
[15] | LOVLEY D R, PHILLIPS E J. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J]. Applied and Environmental Microbiology, 1988, 54(6): 1472-1480. |
[16] | 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
[17] | BRUNET R C, GARCIA-GIL L J. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments[J]. FEMS Microbiology Ecology, 1996, 21(2): 131-138. |
[18] | JIN R C, YANG G F, ZHANG Q Q, et al. The effect of sulfide inhibition on the ANAMMOX process[J]. Water Research, 2013, 47(3): 1459-1469. |
[19] | ALGAR C K, VALLINO J J. Predicting microbial nitrate reduction pathways in coastal sediments[J]. Aquatic Microbial Ecology, 2014, 71(3): 223-238. |
[20] | STREMINSKA M A, FELGATE H, ROWLEY G, et al. Nitrous oxide production in soil isolates of nitrate-ammonifying bacteria[J]. Environmental Microbiology Reports, 2012, 4(1): 66-71. |
[21] | 刘彬彬. 高效废水处理生物反应器中优势功能菌的分子识别与鉴定[D]. 上海: 上海交通大学, 2006. |
[22] | MOHAN S B, SCHMID M, JETTEN M, et al. Detection and widespread distribution of the nrfA gene encoding nitrite reduction to ammonia: A short circuit in the biological nitrogen cycle that competes with denitrifcation[J]. FEMS Microbiology Ecology, 2004, 49(3): 433-443. |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1008
HTML全文浏览数:952
PDF下载数:65
施引文献:0
出版历程
刊出日期:2019-06-18
-->
硫自养与异养混合亚硝酸盐反硝化过程铵生成机制
刘双1,,王莎1,
兰兰1,
李晓玲1,
芦昭霖1
1.长安大学环境科学与工程学院,西安 710064
基金项目: 国家自然科学基金资助项目51778057国家自然科学基金资助项目(51778057)
关键词: 混合反硝化/
异化亚硝酸盐还原为铵/
COD/N/
S/N
摘要:为研究亚硝酸盐型碳、氮、硫同步脱除系统的特性,采用SBBR,以亚硝酸盐、硫化物及乙酸钠为基质,探索6种进水COD/N及5种进水S/N下碳、硫混合亚硝酸盐反硝化过程铵的生成机制。结果表明:在进水COD/N高于2、S/N高于1时,NO2--N去除率高达99%;同时,当氧化还原电位(ORP)低于-400 mV时,会出现铵浓度明显升高现象,在此条件下,进水COD/N不变时,较高的S/N会促进铵的生成;控制进水S/N不变,COD/N为3时铵浓度升高最为明显。微生物分析结果表明,该碳、氮、硫混合体系中同时存在硫自养反硝化、异养反硝化及亚硝酸盐异化还原为铵等过程,碳、硫混合亚硝酸盐反硝化过程铵的生成机制可能是低氧化还原电位和过量电子供体存在的情况下亚硝酸盐异化还原为铵的过程。
English Abstract
Ammonia production mechanism in a simultaneous occurrence of sulfur autotrophic and heterotrophic mixed nitrite denitrification process
LIU Shuang1,,WANG Sha1,
LAN Lan1,
LI Xiaoling1,
LU Zhaolin1
1.School of Environmental Science and Engineering, Chang′an University, Xi′an 710064, China
Keywords: mixotrophic denitrification/
dissimilatory nitrite reduction to ammonia/
COD/N/
S/N
Abstract:In this study, the ammonia production mechanism by a simultaneous autotrophic and heterotrophic (mixotrophic) denitrification process was identified in a sequencing batch biofilm reactor(SBBR) fed with nitrite, sulfide and sodium acetate supplementation, and six different COD/N ratios and five different S/N ratios were designed for this purpose. The result showed that the nitrite removal efficiency was up to 99% when COD/N ratio was higher than 2 and S/N ratio was higher than 1. The increase of ammonia concentration occurred when ORP was lower than -400 mV, and high S/N ratio could enhance the ammonia production with a constant COD/N ratio in influent. While at constant S/N ratio and COD/N ratio of 3, a significant increase of ammonia yield occurred. The microbial analysis showed that sulfur autotrophic denitrification, heterotrophic denitrification as well as dissimilatory nitrite reduction to ammonia were coexisted in this carbon-nitrogen-sulfur synchronous mixing system, in which the ammonia production mechanism may be the process of dissimilatory nitrite reduction to ammonia in the presence of low redox potential and excess electron donor.