删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

短程硝化过程2种亚硝酸盐氧化菌抑制策略探讨

本站小编 Free考研考试/2021-12-31

杨宗玥1,,
付昆明1,,
廖敏辉1,
仇付国1,
曹秀芹1
1.北京建筑大学城市雨水系统与水环境教育部重点实验室,中-荷污水处理技术研发中心,北京100044
基金项目: 北京市教育委员会科技发展计划项目(SQKM201710016006)
北京建筑大学市属高校基本科研业务费专项基金资助项目(X18214, X18182)




Discussion on inhibition strategies of two nitrite oxidizing bacteria in nitritation

YANG Zongyue1,,
FU Kunming1,,
LIAO Minhui1,
QIU Fuguo1,
CAO Xiuqin1
1.Sino-Dutch R&D Center for Future Wastewater Treatment Technologies, Key Laboratory of Urban Storm Water System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

-->

摘要
HTML全文
(0)(0)
参考文献(58)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为维持短程硝化稳定,保证亚硝酸盐高效积累,需要对污水处理系统亚硝酸盐氧化菌(NOB)的性质进行深入了解。分别对Nitrospira以及Nitrobacter的动力学参数,以及在活性污泥系统、生物膜系统、颗粒污泥系统中2菌属特性进行比较。经分析后认为,Nitrospira相对于Nitrobacter比增长速率较低,对O2,NO2-底物亲和性较好,适宜生长于低浓度环境中,是A2/O、短程硝化-厌氧氨氧化工艺中的主要NOB菌属;Nitrobacter则适宜在高浓度环境中生长。在颗粒污泥系统中,NOB主要处于污泥内部,由于缺乏O2,NO2-更容易被淘汰出反应器。通过对比短程硝化主要控制参数,认为NOB的抑制策略包括:在活性污泥系统中维持合理的污泥龄(SRT)以及游离氨(FA)浓度;在生物膜系统中对溶解氧(DO)以及水力停留时间(HRT)进行联合控制;在颗粒污泥系统中维持适量剩余NH4+-N,并淘洗出掺杂其中的絮状污泥。此外,利用“饱食饥饿”效应间歇曝气并维持较低的曝停比同样有利于阻止亚硝酸盐被NOB进一步氧化,保证短程硝化稳定运行。
关键词: 短程硝化/
亚硝酸盐氧化菌(NOB)/
Nitrobacter/
Nitrospira/
动力学参数/
自养脱氮

Abstract:For purpose of maintaining the stability of nitritation, ensuring the efficiency of nitrite accumulation, it’s essential to have insight into the properties of ordinary nitrite oxidizing bacteria (NOB) species in wastewater treatment systems. The kinetic parameters of Nitrospira and Nitrobacter, and the characteristics of the two genus bacteria in the activated sludge system, biofilm system, and granular sludge system were compared. Nitrospira had a lower specific growth rate and a better affinity for O2 and NO2- substrates than Nitrobacter. The former bacteria were suitable for growth in low concentration of substrates, which was considered as the main NOB genus in A2/O and nitritation-anammox process, while the latter ones were suitable for growth in high concentration of substrates. In granular sludge system, NOB mainly existed in the interior of the sludge, and were easy to be eliminated from the reactor due to the lack of O2, NO2- substrates. Through comparing the main control parameters for nitritation, the NOB inhibition strategies were proposed as: maintaining a reasonable sludge retention time (SRT) and free ammonia (FA) concentration in activated sludge system, adjusting dissolved oxygen (DO) and hydraulic retention time (HRT) systematically in biofilm system, sustaining an appropriate amount of residual NH4+-N, and washing out the flocculation from granular sludge. Furthermore, using intermittent aeration based on “cyclic feeding” and maintaining lower ratio of aeration and anaerobic time were propitious to prevent further oxidation of nitrite by NOB, trigger the stability of nitritation.
Key words:nitritation/
nitrite oxidizing bacteria (NOB)/
Nitrobacter/
Nitrospira/
kinetic parameter/
autotrophic nitrogen removal.

加载中
[1] 付昆明, 张杰, 曹相生, 等. 曝气量对不同填料CANON反应器运行效率的影响[J]. 化工学报, 2010, 61(2): 496-503.
[2] 熊鸿斌, 夏晓宇, 王玉芳, 等. 低C/N值城市污水处理厂出水达标的运行条件优化[J]. 中国给水排水, 2013, 29(1): 92-96.
[3] 付昆明, 付国, 左早荣. 厌氧氨氧化技术应用于市政污水处理的前景分析[J]. 中国给水排水, 2015, 31(4): 8-13.
[4] ISHII K, FUJITANI H, SOH K, et al. Enrichment and physiological characterization of a cold-adapted nitrite-oxidizing Nitrotoga sp. from an eelgrass sediment[J]. Applied and Environmental Microbiology, 2017, 83(14): 1-14.
[5] MAIXNER F, NOGUERA D R, ANNESER B, et al. Nitrite concentration influences the population structure of Nitrospira-like bacteria[J]. Environmental Microbiology, 2006, 8(8):1487-1495.
[6] MANSER R, GUJER W, SIEGRIST H. Consequences of mass transfer effects on the kinetics of nitrifiers[J]. Water Research, 2005, 39(19): 4633-4642.
[7] BLACKBURNE R, VADIVELU V M, YUAN Z, et al. Kinetic characterization of an enriched Nitrospira culture with comparison to Nitrobacter[J]. Water Research, 2007, 41(14): 3033-3042.
[8] FUJITANI H, AOI Y, TSUNEDA S. Selective enrichment of two different types of Nitrospira-like nitrite-oxidizing bacteria from a wastewater treatment plant[J]. Microbes and Environments, 2013, 28(2): 236-243.
[9] WU J, ZHANG Y, ZHANG M, et al. Effect of nitrifiers enrichment and diffusion on their oxygen half-saturation value measurements[J]. Biochemical Engineering Journal, 2017, 123: 110-116.
[10] COURTENS E N P, DE CLIPPELEIR H, VLAEMINCK S E, et al. Nitric oxide preferentially inhibits nitrite oxidizing communities with high affinity for nitrite[J]. Journal of Biotechnology, 2015, 193: 120-122.
[11] PARK M, PARK H, CHANDRAN K. Molecular and kinetic characterization of planktonic Nitrospira spp. selectively enriched from activated sludge[J]. Environmental Science & Technology, 2017, 51(5): 2720-2728.
[12] LEYVA-DíAZ J C, CALDERóN K, RODRíGUEZ F A, et al. Comparative kinetic study between moving bed biofilm reactor-membrane bioreactor and membrane bioreactor systems and their influence on organic matter and nutrients removal[J]. Biochemical Engineering Journal, 2013, 77: 28-40.
[13] CRUVELLIER N, POUGHON L, CREULY C, et al. Growth modelling of Nitrosomonas europaea ATCC? 19718 and Nitrobacter winogradskyi ATCC? 25391: A new online indicator of the partial nitrification[J]. Bioresource Technology, 2016, 220:369-377.
[14] CIUDAD G, WERNER A, BORNHARDT C, et al. Differential kinetics of ammonia-and nitrite-oxidizing bacteria: A simple kinetic study based on oxygen affinity and proton release during nitrification[J]. Process Biochemistry, 2006, 41(8): 1764-1772.
[15] NOWKA B, DAIMS H, SPIECK E. Comparison of oxidation kinetics of nitrite-oxidizing bacteria: Nitrite availability as a key factor in niche differentiation[J]. Applied and Environmental Microbiology, 2015, 81(2): 745-753.
[16] RONGSAYAMANONT C, LIMPIYAKORN T, LAW B, et al. Relationship between respirometric activity and community of entrapped nitrifying bacteria: Implications for partial nitrification[J]. Enzyme and Microbial Technology, 2010, 46(3/4):229-236.
[17] 姚倩, 彭党聪, 赵俏迪, 等. 活性污泥中硝化螺菌(Nitrospira)的富集及其动力学参数[J]. 环境科学, 2017, 38(12): 5201-5207.
[18] KIM D, KIM S. Effect of nitrite concentration on the distribution and competition of nitrite-oxidizing bacteria in nitratation reactor systems and their kinetic characteristics[J]. Water Research, 2006, 40(5): 887-894.
[19] NOGUEIRA R, MELO L F. Competition between Nitrospira spp. and Nitrobacter spp. in nitrite-oxidizing bioreactors[J]. Biotechnology and Bioengineering, 2006, 95(1):169-175.
[20] USHIKI N, JINNO M, FUJITANI H, et al. Nitrite oxidation kinetics of two Nitrospira strains: The quest for competition and ecological niche differentiation[J]. Journal of Bioscience and Bioengineering, 2017, 123(5): 581-589.
[21] CéBRON A, GARNIER J. Nitrobacter and Nitrospira genera as representatives of nitrite-oxidizing bacteria: Detection, quantification and growth along the lower Seine River (France) [J]. Water Research, 2005, 39(20): 4979-4992.
[22] KOCH H, LüCKER S, ALBERTSEN M, et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira[J]. Proceedings of the National Academy of Sciences, 2015, 112(36): 11371-11376.
[23] HUANG Z, GEDALANGA P B, ASVAPATHANAGUL P, et al. Influence of physicochemical and operational parameters on Nitrobacter and Nitrospira communities in an aerobic activated sludge bioreactor[J]. Water Research, 2010, 44(15): 4351-4358.
[24] 于莉芳, 杜倩倩, 傅学焘, 等. 城市污水中硝化菌群落结构与性能分析[J]. 环境科学, 2016, 37(11): 4366-4371.
[25] 任武昂. 城市污水输送、处理过程中氮组分的迁变特性及转化规律研究[D]. 西安: 西安建筑科技大学, 2015.
[26] YU L, LI R, DELATOLLA R, et al. Natural continuous influent nitrifier immigration effects on nitrification and the microbial community of activated sludge systems[J]. Journal of Environmental Sciences, 2018, 74: 159-167.
[27] JAUFFUR S, ISAZADEH S, FRIGON D. Should activated sludge models consider influent seeding of nitrifiers? Field characterization of nitrifying bacteria[J]. Water Science & Technology, 2014, 70(9): 1526-1532.
[28] 曾薇, 张丽敏, 王安其, 等. 污水处理系统中硝化菌的菌群结构和动态变化[J]. 中国环境科学, 2015, 35(11): 3257-3265.
[29] 刘国华, 陈燕, 范强, 等. 溶解氧对活性污泥系统的脱氮效果和硝化细菌群落结构的影响[J]. 环境科学学报, 2016, 36(6): 1971-1978.
[30] ABZAZOU T, ARAUJO R M, AUSET M, et al. Tracking and quantification of nitrifying bacteria in biofilm and mixed liquor of a partial nitrification MBBR pilot plant using fluorescence in situ hybridization[J]. Science of the Total Environment, 2016, 541: 1115-1123.
[31] LEENEN E J T M, VAN BOXTEL A M G A, ENGLUND G, et al. Reduced temperature sensitivity of immobilized Nitrobacteragilis cells caused by diffusion limitation[J]. Enzyme and Microbial Technology, 1997, 20(8): 573-580.
[32] PERSSON F, SULTANA R, SUAREZ M, et al. Structure and composition of biofilm communities in a moving bed biofilm reactor for nitritation-anammox at low temperatures[J]. Bioresource Technology, 2014, 154: 267-273.
[33] POOT V, HOEKSTRA M, GELEIJNSE M A A, et al. Effects of the residual ammonium concentration on NOB repression during partial nitritation with granular sludge[J]. Water Research, 2016, 106: 518-530.
[34] FANG F, NI B, LI X, et al. Kinetic analysis on the two-step processes of AOB and NOB in aerobic nitrifying granules[J]. Applied Microbiology and Biotechnology, 2009, 83(6): 1159-1169.
[35] ISANTA E, REINO C, CARRERA J, et al. Stable partial nitritation for low-strength wastewater at low temperature in an aerobic granular reactor[J]. Water Research, 2015, 80: 149-158.
[36] ZHU T, XU B, WU J. Experimental and mathematical simulation study on the effect of granule particle size distribution on partial nitrification in aerobic granular reactor[J]. Biochemical Engineering Journal, 2018, 134: 22-29.
[37] PARK S, BAE W. Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid[J]. Process Biochemistry, 2009, 44(6): 631-640.
[38] PEDROUSO A, VAL DEL RíO á, MORALES N, et al. Nitrite oxidizing bacteria suppression based on in-situ free nitrous acid production at mainstream conditions[J]. Separation and Purification Technology, 2017, 186: 55-62.
[39] KIM D, LEE D, KELLER J. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH[J]. Bioresource Technology, 2006, 97(3): 459-468.
[40] VADIVELU V M, KELLER J, YUAN Z. Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture[J]. Water Research, 2007, 41(4): 826-834.
[41] POLLICE A, TANDOI V, LESTINGI C. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate[J]. Water Research, 2002, 36(10): 2541-2546.
[42] WU J, HE C, VAN LOOSDRECHT M C M, et al. Selection of ammonium oxidizing bacteria (AOB) over nitrite oxidizing bacteria (NOB) based on conversion rates[J]. Chemical Engineering Journal, 2016, 304: 953-961.
[43] WU C, PENG Y, WANG S, et al. Effect of sludge retention time on nitrite accumulation in real-time control biological nitrogen removal sequencing batch reactor[J]. Chinese Journal of Chemical Engineering, 2011, 19(3): 512-517.
[44] RONGSAYAMANONT C, LIMPIYAKORN T, KHAN E. Effects of inoculum type and bulk dissolved oxygen concentration on achieving partial nitrification by entrapped-cell-based reactors[J]. Bioresource Technology, 2014, 164: 254-263.
[45] CHEN Z, WANG X, YANG Y, et al. Partial nitrification and denitrification of mature landfill leachate using a pilot-scale continuous activated sludge process at low dissolved oxygen[J]. Bioresource Technology, 2016, 218: 580-588.
[46] BAO P, WANG S, MA B, et al. Achieving partial nitrification by inhibiting the activity of Nitrospira-like bacteria under high-DO conditions in an intermittent aeration reactor[J]. Journal of Environmental Sciences, 2017, 56: 71-78.
[47] WETT B, HELL M, NYHUIS G, et al. Syntrophy of aerobic and anaerobic ammonia oxidisers[J]. Water Science & Technology, 2010, 61(8): 1915-1922.
[48] 孟婷, 杨宏. 活性污泥快速实现短程硝化及稳定高效运行[J]. 中国给水排水, 2017, 33(15): 1-5.
[49] ALMEIDA R G B D, SANTOS C E D D, LüDERS T C, et al. Nitrogen removal by simultaneous partial nitrification, anammox and denitrification (SNAD) in a structured-bed reactor treating animal feed processing wastewater: Inhibitory effects and bacterial community[J]. International Biodeterioration & Biodegradation, 2018, 133: 108-115.
[50] SAYAVEDRA-SOTO L, FERRELL R, DOBIE M, et al. Nitrobacter winogradskyi transcriptomic response to low and high ammonium concentrations[J]. FEMS Microbiology Letters, 2015, 362(3): 1-7.
[51] 王会芳, 付昆明, 左早荣, 等. 水力停留时间和溶解氧对陶粒CANON反应器的影响[J]. 环境科学, 2015, 36(11): 4161-4167.
[52] 付昆明, 张杰, 曹相生, 等. 曝气量对不同填料CANON反应器运行效率的影响[J]. 化工学报,2010, 61(2): 496-503.
[53] PéREZ J, LOTTI T, KLEEREBEZEM R, et al. Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: A model-based study[J]. Water Research, 2014, 66: 208-218.
[54] 孙延芳, 韩晓宇, 张树军, 等. 颗粒+絮体污泥CANON工艺的启动与SRT影响研究[J]. 环境科学, 2017, 38(2): 672-678.
[55] AKABOCI T R V, GICH F, RUSCALLEDA M, et al. Assessment of operational conditions towards mainstream partial nitritation-anammox stability at moderate to low temperature: Reactor performance and bacterial community[J]. Chemical Engineering Journal, 2018, 350: 192-200.
[56] 李冬, 张杰. 城市污水自养脱氮工艺研究[M]. 中国建筑工业出版社, 2017.
[57] 付昆明, 周厚田, 苏雪莹, 等. 生物膜短程硝化系统的恢复及其转化为CANON工艺的过程[J]. 环境科学, 2017, 38(4): 1536-1543.
[58] WETT B, MURTHY S, TAKáCS I, et al. Key parameters for control of DEMON deammonification process[J]. Water Practice, 2007, 1(5): 1-11.



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1008
HTML全文浏览数:927
PDF下载数:123
施引文献:0
出版历程

刊出日期:2019-01-08




-->








短程硝化过程2种亚硝酸盐氧化菌抑制策略探讨

杨宗玥1,,
付昆明1,,
廖敏辉1,
仇付国1,
曹秀芹1
1.北京建筑大学城市雨水系统与水环境教育部重点实验室,中-荷污水处理技术研发中心,北京100044
基金项目: 北京市教育委员会科技发展计划项目(SQKM201710016006) 北京建筑大学市属高校基本科研业务费专项基金资助项目(X18214, X18182)
关键词: 短程硝化/
亚硝酸盐氧化菌(NOB)/
Nitrobacter/
Nitrospira/
动力学参数/
自养脱氮
摘要:为维持短程硝化稳定,保证亚硝酸盐高效积累,需要对污水处理系统亚硝酸盐氧化菌(NOB)的性质进行深入了解。分别对Nitrospira以及Nitrobacter的动力学参数,以及在活性污泥系统、生物膜系统、颗粒污泥系统中2菌属特性进行比较。经分析后认为,Nitrospira相对于Nitrobacter比增长速率较低,对O2,NO2-底物亲和性较好,适宜生长于低浓度环境中,是A2/O、短程硝化-厌氧氨氧化工艺中的主要NOB菌属;Nitrobacter则适宜在高浓度环境中生长。在颗粒污泥系统中,NOB主要处于污泥内部,由于缺乏O2,NO2-更容易被淘汰出反应器。通过对比短程硝化主要控制参数,认为NOB的抑制策略包括:在活性污泥系统中维持合理的污泥龄(SRT)以及游离氨(FA)浓度;在生物膜系统中对溶解氧(DO)以及水力停留时间(HRT)进行联合控制;在颗粒污泥系统中维持适量剩余NH4+-N,并淘洗出掺杂其中的絮状污泥。此外,利用“饱食饥饿”效应间歇曝气并维持较低的曝停比同样有利于阻止亚硝酸盐被NOB进一步氧化,保证短程硝化稳定运行。

English Abstract






--> --> --> 参考文献 (58)
相关话题/系统 环境科学 城市 工艺 生物