删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

利用一氧化碳工业废气解毒铬渣的方法及条件优化

本站小编 Free考研考试/2021-12-31

何力为1,,
李彬1,
宁平1,
张涛2,
毕廷涛2,
巩校1,
闵熙泽1
1.昆明理工大学环境科学与工程学院,昆明 650093
2.云南省环境科学研究院,云南省重金属污染控制工程技术研究中心,昆明 650034
基金项目: 国家重点研发计划项目(2017YFC0210504)
西部典型产业环境污染控制协同创新中心开放基金资助项目(XTCX-2014-01)




Method and process optimization of applying CO waste gas to detoxify chromite ore processing residue

HE Liwei1,,
LI Bin1,
NING Ping1,
ZHANG Tao2,
BI Tingtao2,
GONG Xiao1,
MIN Xize1
1.School of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2.Yunnan Engineering Technology Research Center for Heavy Metal Pollution Controlling, Yunnan Institute of Environmental Science, Kunming 650034, China

-->

摘要
HTML全文
(0)(0)
参考文献(42)
相关文章
施引文献
资源附件(0)
访问统计

摘要:结合铬渣解毒及一氧化碳工业废气利用现状,提出采用一氧化碳工业废气解毒铬渣的方法。实验对反应温度、反应时间、铬渣质量、铬渣粒径等影响因素进行研究和筛选,用响应面法(RSM)分析了各因素对反应的影响及各因素之间交互性,建立反应的多元回归方程,并通过热力学分析进一步研究方法优越性的机理。结果表明:温度是该工艺铬渣解毒效率的关键影响因素,反应温度越高,解毒效果越好,优选反应温度范围350 ~ 400 ℃;浸出毒性目标值设定为1.0 mg·L-1,反应温度为400 ℃,铬渣质量为40 g,浸出毒性可降低至0.6 mg·L-1,还原率达99.85%;多元回归方程拟合性验证结果良好,RSM分析方法在条件优化中有较好的实用价值。
关键词: 铬渣解毒/
一氧化碳工业废气/
响应面分析/
条件优化

Abstract:On the basis of survey on traditional technology of dry-detoxification of chromite ore processing residue (COPR) and the analysis of utilization of industrial carbon monoxide(CO) waste gas, the method of applying CO waste gas to detoxify COPR was put forward. Lab-scale experiments were conducted to verify its feasibility, thermodynamic calculation was implement to explore the mechanism. Reaction temperature, time, mass, grain size of COPR, and their impacts on the reduction rate were studied by single factor experiments, after that, response surface methodology (RSM) was adopted to analyse interrelationships between factors and build multiple regression equations for the reduction rate of Cr(Ⅵ) and leaching Cr(Ⅵ) for optimizing the technological conditions. Results indicated that, temperature was the key factor which influenced the reducing efficiency, the reduction rate rose with the increase of temperature, optimal temperature was from 350 to 400 ℃. When the target of the desire function was set for Cr(Ⅵ) leaching was 1.0 mg·L-1, combinations of technology conditions were obtained. Validation results for the technological conditions showed that the models were well fitted, when the temperature was minimized to 400 ℃, the maximum mass of COPR was 40 g, the concentration of leaching Cr(Ⅵ) could be reduced to 0.6 mg·L-1 with a reduction rate of 99.85%. The temperature of CO detoxification was proved much lower than traditional dry-detoxification process, which illustrate that CO waste gas detoxification is a promising way in recovery of COPR and proposed a worth considerate way in utilizing CO waste gas.
Key words:chromite ore processing residue detoxification/
carbon monoxide waste gas/
response surface methodology/
condition optimization.

加载中
[1] DARRIE G.Commercial extraction technology and process waste disposal in the manufacture of chromium chemicals from ore[J].Environmental Geochemistry & Health,2001,23(3):187-193 10.1023/A:1012295927081
[2] 宁亚东, 李宏亮. 我国人为源CO排放量的估算研究[J]. 环境科学与技术,2015,38(12Q):397-402
[3] 纪柱. 中国铬盐近五十年发展概况[J]. 无机盐工业,2010,42(12):1-15
[4] 丁翼,纪柱. 铬化合物生产与应用[M]. 北京: 化学工业出版社,2003
[5] WANG T, HE M, PAN Q.A new method for the treatment of chromite ore processing residues[J].Journal of Hazardous Materials,2007,149(2):440-444 10.1016/j.jhazmat.2007.04.009
[6] 丁翼. 铬渣治理工作回顾及经验教训[J]. 化工环保,1994,14(4):210-215
[7] KOWALSKI Z, GOLLINGERTARAJKO M.Environmental evaluation of different variants of the chromium compound production model using chromic waste[J].Waste Management,2003,23(8):771-783 10.1016/S0956-053X(02)00114-9
[8] 纪柱. 铬铁矿无钙焙烧的反应机理[J]. 无机盐工业,1997,29(1):18-12
[9] 陈新.从铬铁矿生产铬酸钠的二个新工艺[J].无机盐工业,1984,16(7):15-17
[10] WALAWSKA B, KOWALSKI Z.Model of technological alternatives of production of sodium chromate (VI) with the use of chromic wastes[J].Waste Management,2000,20(8):711-723 10.1016/S0956-053X(00)00038-6
[11] 李成梁, 孟菁华, 任杰,等. 铬渣处理方法研究现状[J]. 环境工程,2015,33(4):112-115
[12] 盛灿文, 柴立元, 王云燕,等. 铬渣的湿法解毒研究现状及发展前景[J]. 工业安全与环保,2006,32(2):1-3 23674738
[13] 景学森,杨亚提,蔡木林. 铬渣中Cr(Ⅵ)在盐溶液中的浸出机理[J]. 西北农林科技大学学报(自然科学版,2007,35(8):151-154
[14] 张汉泉, 路漫漫, 付金涛. 干式还原法处理铬渣的机理及应用[J].化工环保,2014,34(6):532-534
[15] 刘帅霞. 两段式还原工艺解毒铬渣技术研究[D].上海:东华大学,2013
[16] WU C L, ZHANG H, HE P J, et al.Thermal stabilization of chromium slag by sewage sludge: Effects of sludge quantity and temperature[J].Journal of Iron and Steel Research International,2010,22(7):1110-1115 10.1016/S1001-0742(09)60225-4
[17] SHI Y M, DU X H, MENG Q J, et al.Reaction process of chromium slag reduced by industrial waste in solid phase[J].Journal of Iron and Steel Research International,2007,14(1):12-15 10.1016/S1006-706X(07)60003-X
[18] 石玉敏. 工业废渣高温还原解毒铬渣及终渣资源利用的研究[D]. 沈阳:东北大学,2006
[19] 任庆玉. 铬渣的治理与综合利用[J]. 环境工程,1989,7(3):50-55
[20] 黄本生, 李晓红, 王里奥. 化工铬渣冷固结球团还原解毒实验研究[J].上海环境科学,2003,22(12):911-917
[21] 李先荣, 陈宁, 董明甫,等. 黄磷尾气解毒铬渣[J]. 无机盐工业,2014,46(12):54-56
[22] 王一坤, 雷小苗, 邓磊,等. 可燃废气利用技术研究进展(Ⅰ):高炉煤气、转炉煤气和焦炉煤气[J]. 热力发电,2014(7):1-9
[23] VELASCO A, RAMIREZ M, HERNANDEZ S, et al.Pilot scale treatment of chromite ore processing residue using sodium sulfide in single reduction and coupled reduction/stabilization processes[J].Journal of Hazardous Materials,2012,207-208(12):97-102 10.1016/j.jhazmat.2011.04.012
[24] 陆军民. 工业CO废气回收利用现状与发展[J]. 化工科技市场,2001(11):22-25
[25] MOON D H, WAZNE M, JAGUPILLA S C, et al.Particle size and pH effects on remediation of chromite ore processing residue using calcium polysulfide (CaS5)[J].Science of the Total Environment,2008,399(1):2-10 10.1016/j.scitotenv.2008.03.040
[26] CHEN J, WANG Y, ZHOU S, et al.Reduction/immobilization processes of hexavalent chromium using metakaolin-based geopolymer[J].Journal of Environmental Chemical Engineering,2017,5(1):373-380 10.1016/j.jece.2016.11.028
[27] FARMER J G, PATERSON E, BEWLEY R J F, et al.The implications of integrated assessment and modelling studies for the future remediation of chromite ore processing residue disposal sites[J].Science of the Total Environment,2006,360(1/2/3):90-97 10.1016/j.scitotenv.2005.08.027
[28] 梁英教. 无机物热力学数据手册[M]. 沈阳:东北大学出版社,1993
[29] 张大磊, 何圣兵, 蔡荣宝,等. 铬渣的热解无害化处理[J]. 环境污染与防治,2009,31(10):1-5
[30] 周传典. 高炉炼铁生产技术手册 [M].北京: 冶金工业出版社,2002:104-106
[31] SUN S, Jahanshahi S.Redox equilibria and kinetics of gas-slag reactions[J].Metallurgical & Materials Transactions B,2000,31(5):937-943 10.1007/s11663-000-0070-7
[32] Li Y, FRUEHAN R J, LUCAS J A, et al.The chemical diffusivity of oxygen in liquid iron oxide and a calcium ferrite[J].Metallurgical & Materials Transactions B,2000,31(5):1059-1068 10.1007/s11663-000-0081-4
[33] BONALDE A, HENRIQUEZ A, 255-1260 10.2355/isijinternational.45.1255
[34] 赵玉祥, 沈颐身.现代冶金原理 [M].北京: 冶金工业出版社,1993
[35] POUDEL B K, MARASINI N, TRAN T H, et al.Formulation, characterization and optimization of valsartan self-microemulsifying drug delivery system using statistical design of experiment[J].Chemical & Pharmaceutical Bulletin,2012,60(11):1409-1418 10.1248/cpb.c12-00502
[36] LIONBERGER R A, LEE S L, LEE L M, et al.Quality by design: Concepts for ANDAs[J].AAPS Journal,2008,10(2):268-276 10.1208/s12248-008-9026-7
[37] El-NAGGAR E A, EL-SHWEIHY N M, EL-EWASY S M.Identification and statistical optimization of fermentation conditions for a newly isolated extracellular cholesterol oxidase-producing streptomyces cavourensisstrain NEAE-42[J].BMC Microbiology,2016,16:217 10.1186/s12866-016-0830-4
[38] HWANG C F, CHANG J H, HOUNG J Y, et al.Optimization of medium composition for improving biomass production of lactobacillus plantarum, Pi06 using the Taguchi array design and the Box-Behnken method[J].Biotechnology & Bioprocess Engineering,2012,17(4):827-834 10.1007/s12257-012-0007-4
[39] SHEN N, WANG Q, QIN Y, et al.Optimization of succinic acid production from cane molasses by actinobacillus succinogenes, GXAS137 using response surface methodology (RSM)[J].Food Science & Biotechnology,2014,23(6):1911-1919 10.1007/s10068-014-0261-7
[40] MORADPOUR Z, GHASEMIAN A, SAFARI A, et al.Isolation, molecular identification and statistical optimization of culture condition for a new extracellular cholesterol oxidase-producing strain using response surface methodology[J].Annals of Microbiology,2013,63(3):941-950 10.1007/s13213-012-0547-z
[41] GUPTA B, POUDEL B K, PATHAK S, et al.Effects of formulation variables on the particle size and drug encapsulation of imatinib-loaded solid lipid nanoparticles[J].AAPS PharmSciTech,2016,78(3):652-662 10.1208/s12249-015-0384-z
[42] [



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:387
HTML全文浏览数:272
PDF下载数:89
施引文献:0
出版历程

刊出日期:2018-09-20




-->








利用一氧化碳工业废气解毒铬渣的方法及条件优化

何力为1,,
李彬1,
宁平1,
张涛2,
毕廷涛2,
巩校1,
闵熙泽1
1.昆明理工大学环境科学与工程学院,昆明 650093
2.云南省环境科学研究院,云南省重金属污染控制工程技术研究中心,昆明 650034
基金项目: 国家重点研发计划项目(2017YFC0210504) 西部典型产业环境污染控制协同创新中心开放基金资助项目(XTCX-2014-01)
关键词: 铬渣解毒/
一氧化碳工业废气/
响应面分析/
条件优化
摘要:结合铬渣解毒及一氧化碳工业废气利用现状,提出采用一氧化碳工业废气解毒铬渣的方法。实验对反应温度、反应时间、铬渣质量、铬渣粒径等影响因素进行研究和筛选,用响应面法(RSM)分析了各因素对反应的影响及各因素之间交互性,建立反应的多元回归方程,并通过热力学分析进一步研究方法优越性的机理。结果表明:温度是该工艺铬渣解毒效率的关键影响因素,反应温度越高,解毒效果越好,优选反应温度范围350 ~ 400 ℃;浸出毒性目标值设定为1.0 mg·L-1,反应温度为400 ℃,铬渣质量为40 g,浸出毒性可降低至0.6 mg·L-1,还原率达99.85%;多元回归方程拟合性验证结果良好,RSM分析方法在条件优化中有较好的实用价值。

English Abstract






--> --> --> 参考文献 (42)
相关话题/工业 优化 环境科学 化工 质量