删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于响应曲面法优化H2O2/Fe3+脱除烧结烟气中的Hg0

本站小编 Free考研考试/2021-12-31

李柳柳1,,
闫伯骏2,3,
崔建升1,
邢奕2,3,
路培2,3,
李千里4,
王梦思2,3
1.河北科技大学环境科学与工程学院,石家庄 050018
2.北京科技大学能源与环境工程学院,北京 100083
3.北京市工业典型污染物资源化处理重点实验室,北京 100083
4.河北省廊坊市环境保护局,廊坊 065000
基金项目: 国家自然科学基金资助项目(U1560110)
国家重点研发计划(2017YFC0210301)
中央高校基本科研业务费专项资助




Optimization of Hg0 removal with H2O2/Fe3+ from sintering flue gas based on RSM model

LI Liuliu1,,
YAN Bojun2,3,
CUI Jiansheng1,
XING Yi2,3,
LU Pei2,3,
LI Qianli4,
WANG Mengsi2,3
1.School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
2.School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
3.Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
4.Hebei Province Langfang Environmental Protection Bureau, Langfang 065000, China

-->

摘要
HTML全文
(0)(0)
参考文献(41)
相关文章
施引文献
资源附件(0)
访问统计

摘要:烧结烟气中重金属汞的含量较高,湿法氧化脱除零价汞(Hg0)是当前最受关注的技术之一,但该氧化脱除技术的操作条件仍需优化。为此,以响应曲面法对H2O2/Fe3+氧化脱除Hg0进行了研究和优化。首先参照单因素实验结果,利用Box-Behnken设计(BBD)的3因素3水平实验研究了溶液温度、H2O2浓度和Fe3+浓度3个条件的交互作用并进行分析和优化,发现以H2O2/Fe3+氧化脱除Hg0的最佳条件为溶液温度41.78 °C、H2O2浓度0.55 mol·L-1和Fe3+浓度0.007 mol·L-1,在此最佳条件下Hg0的脱除效率可高达87.28%。最后,在该条件下进行了验证研究,实验结果表明最优条件下Hg0的脱除效率为87.93%±0.87%,与模型预测值基本吻合,表明基于响应曲面分析法所得出的最佳工艺参数准确可靠,对利用H2O2/Fe3+脱除钢铁行业烧结烟气中Hg0的条件优化具有较好的指导作用。
关键词: 烧结烟气/
/
H2O2/Fe3+/
氧化脱除/
响应曲面法

Abstract:The content of heavy mental mercury is high in the sintering flue gas and need to be purified urgently. As one of the most concerned technologies, the operating condition of the wet oxidization technology used for remove Hg0 from flue gas is still need to be optimized. Hence, the removal of Hg0 with H2O2/Fe3+ system was investigated and optimized by response surface analysis (RSM) in this study. Based on the results of single factor condition, Box-Behnken design (BBD) with three factors and levels was employed to investigate and used to analyze the interaction among solution temperature, H2O2 concentration and Fe3+ concentration on Hg0 removal. The experimental results showed that the optimal condition for solution temperature, H2O2 concentration and Fe3+ concentration was 41.78 °C, 0.55 mol·L-1 and 0.007 mol·L-1, respectively. 87.28% Hg0 removal efficiency could be obtained under the optimum conditions. Finally, the verifying experimental was proceeded under the same condition. The experimental results illustrated that as high as 87.93%±0.87% Hg0 removal efficiency could be obtained, which was pretty in coincidence with the model predictive value. Thus the optimal parameters obtained from response surface methodology were accurate and reliable. Therefore, the conditions optimized by RSM for Hg0 removal with H2O2/Fe3+ from flue gas of sintering is desirable.
Key words:sintering flue gas/
mercury/
H2O2/Fe3+/
oxidative removal/
response surface methodology.

加载中
[1] KIRBY T.UN agrees new treaty to reduce harm from mercury[J].Lancet, 2013,381:362-374 10.1016/S0140-6736(13)60153-1
[2] SELIN N E.Global biogeochemical cycling of mercury: a review[J].Annu Review of Environment & Resources, 2009, 34:43-63 10.1146/annurev.environ.051308.084314
[3] ZHANG L, WANG S, WANG L, et al.Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China[J].Environmental Science and Technology, 2015, 49(5): 3185-3194 10.1021/es504840m
[4] 刘珺,薛建明,徐月阳,等.燃煤电厂静电除尘器协同控制汞排放[J].环境工程学报,2014,8(11):4853-4857
[5] SUBIR M, ARIYA P A, DASTOOR A P.A review of the sources of uncertainties in atmospheric mercury modeling II.Mercury surface and heterogeneous chemistry:A missing link[J].Atmospheric Environment, 2012, 46(1):1-10 10.1016/j.atmosenv.2011.07.047
[6] CARPI A.Mercury from combustion sources: A review of the chemical species emitted and their transport in the atmosphere[J].Water, Air & Soil Pollution, 1997, 98(3/4):241-254 10.1007/BF02047037
[7] 陈强,刁永发,范红兵.飞灰-氢氧化钙/聚苯硫醚(PPS)滤料对烟气中单质汞的脱除[J].环境工程学报,2015,9(3):1349-1354
[8] MASON R P.Mercury Emission from Natural Processes and Their Importance in the Global Mercury Cycle[M].Boston, MA Springer US, 2009:173-191
[9] QU Z, XIE J, XU H, et al.Regenerable sorbent with a high capacity for elemental mercury removal and recycling from the simulated flue gas at a low temperature[J].Energy & Fuels, 2015, 29(10):6187-6196 10.1021/acs.energyfuels.5b00868
[10] TIAN L, LI C, LI Q, et al.Removal of elemental mercury by activated carbon impregnated with CeO2[J].Fuel, 2009, 88(9):1687-1691 10.1016/j.fuel.2009.01.022
[11] HOU W, ZHOU J, QI P, et al.Effect of H2S/HCl on the removal of elemental mercury in syngas over CeO2-TiO2[J].Chemical Engineering Journal, 2014, 241:131-137 10.1016/j.cej.2013.12.047
[12] LI H, WU C, LI Y, et al.Superior activity of MNOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J].Applied Catalysis B Environmental, 2012, 111-112:381-388 10.1016/j.apcatb.2011.10.021
[13] LI H, LI Y, WU C, et al.Oxidation and capture of elemental mercury over SiO2-TiO2-V2O catalysts in simulated low-rank coal combustion flue gas[J].Chemical Engineering Journal, 2011, 169(1):186-193 10.1016/j.cej.2011.03.003
[14] 张星,李彩亭,樊小鹏,等.CeCl3活性炭纤维去除模拟烟气中单质汞的实验研究[J].中国环境科学,2012,32(5):816-821 10.3969/j.issn.1000-6923.2012.05.007
[15] FAN X P, LI C T, ZENG G M, et al.The effect of Cu/HZSM-5 on combined removal of Hg0 and NO from flue gas[J].Fuel Processing Technology, 2012, 104:325-331 10.1016/j.fuproc.2012.06.003
[16] FANG P, CEN C, WANG X, et al.Simultaneous removal of SO2, NO and Hg0 by wet scrubbing using urea+KMnO4 solution[J].Fuel Processing Technology, 2013, 106(2):645-653 10.1016/j.fuproc.2012.09.060
[17] WANG Z, PEHKONEN S O.Oxidation of elemental mercury by aqueous bromine: Atmospheric implications[J].Atmospheric Environment, 2004, 38(22):3675-3688 10.1016/j.atmosenv.2004.02.059
[18] BYUN Y, HAMILTON L P, TU X, et al.Formation of chlorinated species through reaction of SO2 with NaClO2 powder and their role in the oxidation of NO and Hg0[J].Environmental Science and Pollution Research, 2014, 21(13):8052-8058 10.1007/s11356-014-2669-2
[19] ZHAO Y, MA X, LIU S, et al.Experiments on and mechanism of simultaneous removal of Hg0, SO2 and NO from flus gas using NaClO2 solution[J].Environmental Technology, 2009, 30(3):277-282 10.1080/09593330802573795
[20] LIU Y, PAN J, WANG Q, et al.Removal of Hg0 from containing-SO2/NO flue gas by ultraviolet/H2O2 process in a novel photochemical reactor[J].AIChE Journal, 2014, 60(6):2275-2285 10.1002/aic.14388
[21] ZHANG B, ZHONG Z, DING K, et al.Photooxidative removal of Hg0 from simulated flue gas using UV/H2O2 advanced oxidation process: Influence of operational parameters[J].Korean Journal of Chemical Engineering, 2014, 31(1):56-61 10.1007/s11814-013-0179-4
[22] ZHAO Y, HAO Y, ZHANG P, et al.An integrative process for Hg0 removal using vaporized H2O2/Na2S2O8[J].Fuel, 2014, 136(10):113-121 10.1016/j.fuel.2014.07.046
[23] 李俊华,王羽,司文哲.燃煤烟气中零价汞的催化氧化技术研究[C].2015年汞污染防治与履行国际汞公约研讨会,2015
[24] 段雷,万奇,贺克斌,等. 一种用于燃煤电厂烟气单质汞氧化的催化剂及其制备方法:ZL 201010176293.0.B[P]. 2010-09-15
[25] 石文天,刘玉德,王西彬,等.微细铣削表面粗糙度预测与试验[J].农业机械学报,2010, 41(1):211-215 10.3969/j.issn.1000-1298.2010.01.040
[26] MONTGOMERY D C.Design and Analysis of Experiments[M].New York: John Wiley, 1991
[27] WP K, BM V.Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems[J].Environmental Science & Technology, 2003, 37(6):1150-1158 10.1021/es020874g
[28] NTAMPEGLIOTIS K, RIGA A, KARAYANNIS V, et al.Decolorization kinetics of Procion H-EXL dyes from textile dyeing using Fenton-like reactions[J].Journal of Hazardous Materials, 2006, 136(1):75-84 10.1016/j.jhazmat.2005.11.016
[29] ZHAO L, ROCHELLE G T.Hg absorption in aqueous permanganate [J].AIChE Journal. 1996, 42(12):3559-3562 10.1002/aic.690421227
[30] ZHAO Y, YAO J, MA X.Absorption behavior and removal of gaseous element mercury by sodium chlorite solution[J].Journal of Environmental Engineering, 2012, 138(6):620-624 10.1061/(ASCE)EE.1943-7870.0000519
[31] LIU Y, ZHANG J, SHENG C, et al.Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process[J].Chemical Engineering Journal, 2010, 162(3):1006-1011 10.1016/j.cej.2010.07.009
[32] SASMAZ E, ABOUND S, WILCOX J.Hg binding on Pd binary alloys and overlays[J].Journal of Physical Chemistry C, 2009, 113(18):7813-7820 10.1021/jp8112478
[33] HAN Y, FAN M, RUSSEL A G.New insights into synergistic effects and active species toward Hg0 emission control by Fe(VI) absorbent[J].Fuel, 2015, 140(15):309-316 10.1016/j.fuel.2014.09.072
[34] FAN H J, HUANG S T, CHUNG W H, et al.Degradation pathways of crystal violet by Fenton and Fenton-like systems: Condition optimization and intermediate separation and identification[J].Journal of Hazardous Materials, 2009, 171(1):1032-1044 10.1016/j.jhazmat.2009.06.117
[35] DANESHVAR N, BEHNAJADY M A, ASGHAR Y Z.Photooxidative degradation of 4-nitrophenol (4-NP) in UV/H2O2 process: Influence of operational parameters and reaction mechanism[J].Journal of Hazardous Materials, 2007, 139(2):275-279 10.1016/j.jhazmat.2006.06.045
[36] LIU Y, ZANG J, PAN J, et al.Investigation on removal of NO from SO2- containing simulated flue gas by UV/Fenton-like reaction[J].Energy & Fuels, 2012, 26(9):5430-5436 10.1021/ef3008568
[37] 廖素凤,陈剑雄,杨志坚,等.响应曲面分析法优化葡萄籽原花青素提取工艺的研究[J].热带作物学报,2011,32(3):554-559 10.3969/j.issn.1000-2561.2011.03.038
[38] BHATTACHARYYA A, DUTTA S, DE P, et al.Removal of mercury (II) from aqueous solution using papain immobilized on alginate bead: Optimization of immobilization condition and modeling of removal study[J].Bioresource Technology, 2010, 101(24):9421-9428 10.1016/j.biortech.2010.06.126
[39] LITTLE T M, HILLS F.J.Agricultural Experimental Design and Analysis[M].New York: John Wiley, 1978
[40] LIU Y, WANG Q.Removal of element mercury from flue gas by thermally activated ammonium persulfate in a bubble column reaction[J].Environmental Science & Technology, 2014, 48:12181-12189 10.1021/es501966h
[41] XING Y, YAN BJ, LU P, et al.Purification of Hg0 from flue gas by wet oxidation methodand its mechanism: A review[J].Environmental Science Pollution Research, 2017, 24(34):26310-26323 10.1007/s11356-017-0480-6



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1258
HTML全文浏览数:868
PDF下载数:381
施引文献:0
出版历程

刊出日期:2018-04-22




-->








基于响应曲面法优化H2O2/Fe3+脱除烧结烟气中的Hg0

李柳柳1,,
闫伯骏2,3,
崔建升1,
邢奕2,3,
路培2,3,
李千里4,
王梦思2,3
1.河北科技大学环境科学与工程学院,石家庄 050018
2.北京科技大学能源与环境工程学院,北京 100083
3.北京市工业典型污染物资源化处理重点实验室,北京 100083
4.河北省廊坊市环境保护局,廊坊 065000
基金项目: 国家自然科学基金资助项目(U1560110) 国家重点研发计划(2017YFC0210301) 中央高校基本科研业务费专项资助
关键词: 烧结烟气/
/
H2O2/Fe3+/
氧化脱除/
响应曲面法
摘要:烧结烟气中重金属汞的含量较高,湿法氧化脱除零价汞(Hg0)是当前最受关注的技术之一,但该氧化脱除技术的操作条件仍需优化。为此,以响应曲面法对H2O2/Fe3+氧化脱除Hg0进行了研究和优化。首先参照单因素实验结果,利用Box-Behnken设计(BBD)的3因素3水平实验研究了溶液温度、H2O2浓度和Fe3+浓度3个条件的交互作用并进行分析和优化,发现以H2O2/Fe3+氧化脱除Hg0的最佳条件为溶液温度41.78 °C、H2O2浓度0.55 mol·L-1和Fe3+浓度0.007 mol·L-1,在此最佳条件下Hg0的脱除效率可高达87.28%。最后,在该条件下进行了验证研究,实验结果表明最优条件下Hg0的脱除效率为87.93%±0.87%,与模型预测值基本吻合,表明基于响应曲面分析法所得出的最佳工艺参数准确可靠,对利用H2O2/Fe3+脱除钢铁行业烧结烟气中Hg0的条件优化具有较好的指导作用。

English Abstract






--> --> --> 参考文献 (41)
相关话题/优化 实验 北京 技术 环境科学