删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

亚硝化颗粒污泥处理低碳高氨氮废水的影响因素

本站小编 Free考研考试/2021-12-31

李刚1,2,3,,
王建芳1,2,3,
沈耀良1,2,3
1.苏州科技大学环境科学与工程学院,苏州 215009
2.江苏省环境科学与工程重点实验室,苏州 215009
3.江苏高校水处理技术与材料协同创新中心,苏州 215009
基金项目: 国家自然科学基金资助项目(51308367,51578353)




Influencing factors of nitrosation granular sludge treating wastewater with low carbon and high ammonia concentration

LI Gang1,2,3,,
WANG Jianfang1,2,3,
SHEN Yaoliang1,2,3
1.School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
2.Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou 215009, China
3.Jiangsu High Education Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215009, China

-->

摘要
HTML全文
(0)(0)
参考文献(25)
相关文章
施引文献
资源附件(0)
访问统计

摘要:稳定的部分硝化是新型脱氮工艺处理低C/N比高氨氮废水的关键环节。在SBR中,以放置超过30 d的亚硝化颗粒污泥为接种污泥,考察反应器内快速启动亚硝化的可行性和污泥形态变化, 探讨pH和C/N比对颗粒污泥性能和氮转化的影响。结果表明,通过提高进水负荷可快速启动亚硝化反应器,氨氮去除率和亚硝酸盐累积率均在90%以上,由同步反硝化引起的氮损失为20%左右。降低进水pH至7.0,SBR周期运行最高游离氨FA浓度为5.1 mg?L-1,有利于NOB选择性抑制,提高氨氮去除率,出水NO2--N/NH4+-N比值从0.5提高到0.95左右。C/N比高于2,会引起异养微生物的快速增殖,COD去除负荷提高了1.45 kg?(m3?d)-1,AOB受显著抑制,出水NO2--N/NH4+-N由1.0降低至0.65左右,出现颗粒污泥破裂、解体。
关键词: 好氧颗粒污泥/
亚硝化/
pH/
C/N比

Abstract:Achieving stable partial nitrification is a key step in treating wastewater with low carbon/nitrogen ratio and high ammonia concentration in the new nitrogen removal process. The feasibility of fast start-up nitrosation and change of sludge morphology were studied in the reactor, inoculating nitrosation granular sludge which was stored over 30 days in SBR. The effects of pH and C/N ratio on granular performance and nitrogen compound transformation. As a result, nitrosation reactor was fast started by improving influent nitrogen loading. Over 90% of the ammonia removal and nitrite accumulation were achieved while nearly 20% total nitrogen was obtained by simultaneous denitrification. While the pH was decreased to 7.0, the concentration of free ammonia(FA) was 5.1 mg?L-1 in a SBR cycle, which was in favour of inhibiting NOB and improving ammonia removal. The ratio of NO2--N/NH4+-N was increased from 0.5 to 0.95. When the ratio of C/N in influent was over 2, heterotrophic microorganisms were augmented and the COD removal loading was increased by 1.45 kg?(m3?d)-1. Meanwhile, AOB was inhibited and the ratio of NO2--N/NH4+-N was reduced from 1.0 to 0.65 while the structure of some granular sludge was fallen apart.
Key words:aerobic granular sludge/
nitrosation/
pH/
C/N ratio.

加载中
[1] SHALINI S S, JOSEPH K.Start-up of the sharon and anammox process in landfill bioreactors using aerobic and anaerobic ammonium oxidizing biomass[J].Bioresource Technology,2013,149(4):474-485 10.1016/j.biortech.2013.09.104
[2] VALVERDE P B, MAURICIO I M, SIN G.Systematic design of an optimal control system for the Sharon-anammox process[J].Journal of Process Control,2016,39:1-10 10.1016/j.jprocont.2015.12.009
[3] DOSTA J, VILA J, SANCHO I, et al.Two-step partial nitritation/anammox process in granulation reactors: Start-up operation and microbial characterization[J].Journal of Environmental Management,2015,164(10):196-205 10.1016/j.jenvman.2015.08.023
[4] PERERA M K, ENGLEHARDT J D, TCHOBANOGLOUS G, et al.Control of nitrification/denitrification in an onsite two chamber intermittently aerated membrane bioreactor with alkalinity and carbon addition: Model and experiment[J].Water Research,2017,115:94-101 10.1016/j.watres.2017.02.019
[5] WU S, BHATTACHARJEE A S, WEISSBRODT D G, et al.Effect of short term external perturbations on bacterial ecology and activities in a partial nitritation and anammox reactor[J].Bioresource Technology,2016,219:527-535 10.1016/j.biortech.2016.07.118
[6] SHOW K Y, LEE D J, TAY J H.Aerobic granulation: Advances and challenges[J].Applied Biochemistry & Biotechnology,2012,167(6):1622-1640 10.1007/s12010-012-9609-8
[7] LAURENI M, FALAS P, ROBIN O, et al.Mainstream partial nitritation and anammox: Long-term process stability and effluent quality at low temperatures[J].Water Research,2016,101:628-639 10.1016/j.watres.2016.05.005
[8] LI H S, ZHOU S Q, HUANG G T, et al.Achieving stable partial nitritation using endpoint pH control in an SBR treating landfill leachate[J].Process Safety & Environmental Protection,2014,92(3):199-205 10.1016/j.psep.2013.01.005
[9] LI X, HUANG Y, YUAN Y, et al.Start up and operating characteristics of an external air-lift reflux partial nitritation-anammox integrative reactor[J].Bioresource Technology,2017,238:657-665 10.1016/j.biortech.2017.04.109
[10] 刘文如, 沈耀良, 丁玲玲, 等. 接种好氧颗粒污泥快速启动硝化工艺的过程研究[J]. 环境科学,2013,34(6):2302-2308 10.13227/j.hjkx.2013.06.047
[11] WU L, PENG C Y, PENG Y Z, et al.Effect of wastewater COD/N ratio on aerobic nitrifying sludge granulation and microbial population shift[J].Journal of Environmental Sciences,2012,24(2):234-241 10.1016/S1001-0742(11)60719-5
[12] 王书永, 钱飞跃, 王建芳, 等. 有机物对亚硝化颗粒污泥中功能菌活性的影响[J]. 环境科学,2017,38(1):269-275 10.13227/j.hjkx.201607076
[13] DONG W, LI S, TAO Y, et al.Aerobic granules formation and simultaneous nitrogen and phosphorus removal treating high strength ammonia wastewater in sequencing batch reactor[J].Bioresource Technology,2014,171(1):211-216 10.1016/j.biortech.2014.08.001
[14] 赵志瑞, 马斌, 张树军, 等. 高氨氮废水与城市生活污水短程硝化系统菌群比较[J]. 环境科学,2013,34(4):1448-1456 10.13227/j.hjkx.2013.04.022
[15] ZHAO J T, HUANG J, GUAN M L, et al.Mathematical simulating the process of aerobic granular sludge treating high carbon and nitrogen concentration wastewater[J].Chemical Engineering Journal,2016,306:676-684 10.1016/j.cej.2016.07.098
[16] 金仁村, 阳广凤, 马春, 等. 乙酸钠和无机盐对部分亚硝化反应器运行性能的影响[J]. 环境科学学报,2010,30(3):504-512
[17] 季民, 刘灵婕, 翟洪艳, 等. 高浓度游离氨冲击负荷对生物硝化的影响机制[J]. 环境科学,2017,38(1):260-268 10.13227/j.hjkx.201607116
[18] ANTHONISEN A C, LOEHR R C, PRAKASAM T B, et al.Inhibition of nitrification by ammonia and nitrous acid[J].Journal Water Pollution Control Federation,1976,48(5):835-852
[19] CHO K, SHIN S G, LEE J, et al.Nitrification resilience and community dynamics of ammonia-oxidizing bacteria with respect to ammonia loading shock in a nitrification reactor treating steel wastewater[J].Journal of Bioscience & Bioengineering,2016,122(2):196-202 10.1016/j.jbiosc.2016.01.009
[20] SOLIMAN M, ELDYASTI A.Long-term dynamic and pseudo-state modeling of complete partial nitrification process at high nitrogen loading rates in a sequential batch reactors (SBR)[J].Bioresource Technology,2017,233:382-390 10.1016/j.biortech.2017.02.108
[21] WANG J L, GONG B Z, WANG Y M, et al.The potential multiple mechanisms and microbial communities in simultaneous nitrification and denitrification process treating high carbon and nitrogen concentration saline wastewater[J].Bioresource Technology,2017,243:708-715 10.1016/j.biortech.2017.06.131
[22] WANG J F, QIAN F Y, LIU X P, et al.Cultivation and characteristics of partial nitrification granular sludge in a sequencing batch reactor inoculated with heterotrophic granules[J].Applied Microbiology & Biotechnology,2016,100(21):9381-9391 10.1007/s00253-016-7797-9
[23] ZIELINSKA M, BERNAT K, CYAZIK K A, et al.Nitrogen removal from wastewater and bacterial diversity in activated sludge at different COD/N ratios and dissolved oxygen concentrations[J].Journal of Environmental Sciences,2012,24(6):990-998 10.1016/S1001-0742(11)60867-X
[24] 刘小朋, 王建芳, 钱飞跃, 等. 提高有机负荷对好氧颗粒污泥形成与稳定过程的影响[J]. 环境科学,2015,36(9):3352-3357 10.13227/j.hjkx.2015.09.030
[25] LUO J H, HAO T W, WEI L, et al.Impact of influent COD/N ratio on disintegration of aerobic granular sludge[J].Water Research,2014,62(7):127-135 10.1016/j.watres.2014.05.037



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1571
HTML全文浏览数:1077
PDF下载数:742
施引文献:0
出版历程

刊出日期:2018-03-22




-->








亚硝化颗粒污泥处理低碳高氨氮废水的影响因素

李刚1,2,3,,
王建芳1,2,3,
沈耀良1,2,3
1.苏州科技大学环境科学与工程学院,苏州 215009
2.江苏省环境科学与工程重点实验室,苏州 215009
3.江苏高校水处理技术与材料协同创新中心,苏州 215009
基金项目: 国家自然科学基金资助项目(51308367,51578353)
关键词: 好氧颗粒污泥/
亚硝化/
pH/
C/N比
摘要:稳定的部分硝化是新型脱氮工艺处理低C/N比高氨氮废水的关键环节。在SBR中,以放置超过30 d的亚硝化颗粒污泥为接种污泥,考察反应器内快速启动亚硝化的可行性和污泥形态变化, 探讨pH和C/N比对颗粒污泥性能和氮转化的影响。结果表明,通过提高进水负荷可快速启动亚硝化反应器,氨氮去除率和亚硝酸盐累积率均在90%以上,由同步反硝化引起的氮损失为20%左右。降低进水pH至7.0,SBR周期运行最高游离氨FA浓度为5.1 mg?L-1,有利于NOB选择性抑制,提高氨氮去除率,出水NO2--N/NH4+-N比值从0.5提高到0.95左右。C/N比高于2,会引起异养微生物的快速增殖,COD去除负荷提高了1.45 kg?(m3?d)-1,AOB受显著抑制,出水NO2--N/NH4+-N由1.0降低至0.65左右,出现颗粒污泥破裂、解体。

English Abstract






--> --> --> 参考文献 (25)
相关话题/环境科学 工艺 苏州科技大学 江苏 微生物