删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

根际微生物增强宿主植物耐铬能力生理机制研究进展

本站小编 Free考研考试/2021-12-30

邢淑萍1,2,
陈保冬1,2,
郝志鹏1,
张莘1,2,,
1. 中国科学院生态环境研究中心城市与区域生态国家重点实验室, 北京 100085;
2. 中国科学院大学, 北京 100049
作者简介: 邢淑萍(1996-),女,硕士,研究方向为土壤污染修复,E-mail:stellar_xsp@sina.com.
通讯作者: 张莘,xinzhang@rcees.ac.cn
基金项目: 国家自然科学基金面上项目(21677164,41977042);“十三五”国家重点研发计划项目(2016YFD0800404)


中图分类号: X171.5


The Role of Rhizosphere Microorganisms in Enhancing Chromium Tolerance of Host Plants

Xing Shuping1,2,
Chen Baodong1,2,
Hao Zhipeng1,
Zhang Xin1,2,,
1. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Corresponding author: Zhang Xin,xinzhang@rcees.ac.cn

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(134)
相关文章
施引文献
资源附件(0)
访问统计

摘要:植物根际有大量微生物,其中一部分微生物,如根际促生菌、丛枝菌根真菌、非麦角属内生真菌和外生菌根真菌,在改善宿主营养状况,缓解宿主由于旱涝、盐分和重金属等环境胁迫导致的危害中起到重要作用。笔者将以这4种根际微生物为例,综述它们提高宿主植物耐铬性的内在机制,如通过促进宿主生长、降低根际土壤中铬的有效性、降低铬从根系向叶片的转运以及利用自身组织固持铬等,直接或间接地提高植物对铬的耐受能力,展现出多样且互有差异的功能。同时,笔者提出了铬在根际微生物与宿主的共生体系内转运和解毒行为的分子和生理机制上的不足,并对未来根际微生物互作的研究内容提出了展望。
关键词: 铬胁迫/
根际微生物/
耐受机制/
相互作用

Abstract:There are ubiquitous microorganisms in the rhizosphere forming symbiosis with host plants. Some of them, including plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi, non-clavicipitaceous endophytes and ectomycorrhizal fungi, play important roles in improving plant nutrition status and alleviating the damage caused by drought, flooding, salinity and heavy metal stress. This paper reviewed the underlying mechanisms of enhancing plant chromium (Cr) tolerance by these four groups of rhizosphere microorganisms. As a whole, they can directly or indirectly improve plant Cr tolerance via various and different functions including promoting plant growth, reducing the Cr bioavailability, decreasing the translocation of metal from roots to shoots, stabilizing metal by fungal structures and so on. However, the physiological and molecular mechanisms underlying Cr behavior and detoxification in rhizosphere remain largely unknown. It's also of great importance to clarify the effect of interaction networks between the rhizosphere microorganisms.
Key words:chromium stress/
rhizosphere microorganisms/
tolerance mechanism/
interaction networks.

加载中
Pradas del Real A E, García-Gonzalo P, Lobo M C, et al. Chromium speciation modifies root exudation in two genotypes of Silene vulgaris[J]. Environmental and Experimental Botany, 2014, 107:1-6
Kotaś J, Stasicka Z. Chromium occurrence in the environment and methods of its speciation[J]. Environmental Pollution, 2000, 107(3):263-283
Mohanty M, Patra H K. Attenuation of chromium toxicity by bioremediation technology[J]. Reviews of Environmental Contamination and Toxicology, 2011, 210:1-34
Kimbrough D E, Cohen Y, Winer A M, et al. A critical assessment of chromium in the environment[J]. Critical Reviews in Environmental Science and Technology, 1999, 29(1):1-46
Fendorf S E. Surface reactions of chromium in soils and waters[J]. Geoderma, 1995, 67(1-2):55-71
Panda S K, Choudhury S. Chromium stress in plants[J]. Brazilian Journal of Plant Physiology, 2005, 17(1):95-102
Losi M E, Amrhein C, Frankenberger W T Jr. Environmental biochemistry of chromium[J]. Reviews of Environmental Contamination and Toxicology, 1994, 136:91-121
Cheung K H, Gu J D. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential:A review[J]. International Biodeterioration & Biodegradation, 2007, 59(1):8-15
Singh H P, Mahajan P, Kaur S, et al. Chromium toxicity and tolerance in plants[J]. Environmental Chemistry Letters, 2013, 11(3):229-254
Rai V, Vajpayee P, Singh S N, et al. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L.[J]. Plant Science, 2004, 167(5):1159-1169
Poschenrieder C, Gunse B, Barcelo J. Chromium-induced inhibition of ethylene evolution in bean (Phaseolus vulgaris) leaves[J]. Physiologia Plantarum, 1993, 89(2):404-408
张黛静, 姜丽娜, 邵云, 等. 铬胁迫下不同品种小麦萌发和内源激素的变化[J]. 应用与环境生物学报, 2009, 15(5):602-605Zhang D J, Jiang L N, Shao Y, et al. Variations in germination and endogenous hormone contents of wheat cultivars under Cr stress[J]. Chinese Journal of Applied & Environmental Biology, 2009, 15(5):602-605(in Chinese)
Montes-Holguin M O, Peralta-Videa J R, Meitzner G, et al. Biochemical and spectroscopic studies of the response of Convolvulus arvensis L. to chromium(Ⅲ) and chromium(Ⅵ) stress[J]. Environmental Toxicology and Chemistry, 2006, 25(1):220-226
Pandey V, Dixit V, Shyam R. Chromium(Ⅵ) induced changes in growth and root plasma membrane redox activities in pea plants[J]. Protoplasma, 2009, 235(1-4):49-55
Vernay P, Gauthier-Moussard C, Hitmi A. Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L.[J]. Chemosphere, 2007, 68(8):1563-1575
Subrahmanyam D. Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.)[J]. Photosynthetica, 2008, 46(3):339-345
Schiavon M, Pilon-Smits E A, Wirtz M, et al. Interactions between chromium and sulfur metabolism in Brassica juncea[J]. Journal of Environmental Quality, 2008, 37(4):1536-1545
Gopal R, Rizvi A H, Nautiyal N. Chromium alters iron nutrition and water relations of spinach[J]. Journal of Plant Nutrition, 2009, 32(9):1551-1559
Vajpayee P, Tripathi R D, Rai U N, et al. Chromium(Ⅵ) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L.[J]. Chemosphere, 2000, 41(7):1075-1082
Shanker A K, Cervantes C, Loza-Tavera H, et al. Chromium toxicity in plants[J]. Environment International, 2005, 31(5):739-753
Duman F, Koca F D, Sahan S. Antagonist effects of sodium chloride on the biological responses of an aquatic plant (Ceratophyllum demersum L.) exposed to hexavalent chromium[J]. Water, Air, & Soil Pollution, 2014, 225(2):1-12
Pereira M, Bartolomé M C, Sánchez-Fortún S. Bioadsorption and bioaccumulation of chromium trivalent in Cr(Ⅲ)-tolerant microalgae:A mechanisms for chromium resistance[J]. Chemosphere, 2013, 93(6):1057-1063
Chandra P, Kulshreshtha K. Chromium accumulation and toxicity in aquatic vascular plants[J]. The Botanical Review, 2004, 70(3):313-327
Choo T P, Lee C K, Low K S, et al. Accumulation of chromium(Ⅵ) from aqueous solutions using water lilies (Nymphaea spontanea)[J]. Chemosphere, 2006, 62(6):961-967
Ganesh K S, Baskaran L, Rajasekaran S, et al. Chromium stress induced alterations in biochemical and enzyme metabolism in aquatic and terrestrial plants[J]. Colloids and Surfaces B, Biointerfaces, 2008, 63(2):159-163
Sangwan P, Kumar V, Joshi U N. Effect of chromium(Ⅵ) toxicity on enzymes of nitrogen metabolism in clusterbean (Cyamopsis tetragonoloba L.)[J]. Enzyme Research, 2014, 2014:784036
Shukla O P, Dubey S, Rai U N. Preferential accumulation of cadmium and chromium:Toxicity in Bacopa monnieri L. under mixed metal treatments[J]. Bulletin of Environmental Contamination and Toxicology, 2007, 78(3-4):252-257
Kundu D, Dey S, Raychaudhuri S S. Chromium(Ⅵ)-induced stress response in the plant Plantago ovata Forsk in vitro[J]. Genes and Environment, 2018, 40:21
Narendrula-Kotha R, Theriault G, Mehes-Smith M, et al. Metal toxicity and resistance in plants and microorganisms in terrestrial ecosystems[J]. Reviews of Environmental Contamination and Toxicology, 2020, 249:1-27
Abdu N, Abdullahi A A, Abdulkadir A. Heavy metals and soil microbes[J]. Environmental Chemistry Letters, 2017, 15(1):65-84
Kong Z Y, Glick B R. The role of plant growth-promoting bacteria in metal phytoremediation[J]. Advances in Microbial Physiology, 2017, 71:97-132
Glick B R. Plant growth-promoting bacteria:Mechanisms and applications[J]. Scientifica, 2012, 2012:963401
Ma Y, Prasad M N, Rajkumar M, et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils[J]. Biotechnology Advances, 2011, 29(2):248-258
Pandey P, Irulappan V, Bagavathiannan M V, et al. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits[J]. Frontiers in Plant Science, 2017, 8:537
Benizri E, Baudoin E, Guckert A. Root colonization by inoculated plant growth-promoting rhizobacteria[J]. Biocontrol Science and Technology, 2001, 11(5):557-574
Ahemad M. Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria[J]. Journal of Genetic Engineering & Biotechnology, 2015, 13(1):51-58
Gupta P, Kumar V, Usmani Z, et al. A comparative evaluation towards the potential of Klebsiella sp. and Enterobacter sp. in plant growth promotion, oxidative stress tolerance and chromium uptake in Helianthus annuus (L.)[J]. Journal of Hazardous Materials, 2019, 377:391-398
Somers E, Vanderleyden J, Srinivasan M. Rhizosphere bacterial signalling:A love parade beneath our feet[J]. Critical Reviews in Microbiology, 2004, 30(4):205-240
Indiragandhi P, Anandham R, Madhaiyan M, et al. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera:Plutellidae)[J]. Current Microbiology, 2008, 56(4):327-333
Neubauer U, Furrer G, Kayser A, et al. Siderophores, NTA, and citrate:Potential soil amendments to enhance heavy metal mobility in phytoremediation[J]. International Journal of Phytoremediation, 2000, 2(4):353-368
Rajkumar M, Nagendran R, Lee K J, et al. Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard[J]. Chemosphere, 2006, 62(5):741-748
Belimov A A, Hontzeas N, Safronova V I, et al. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern)[J]. Soil Biology and Biochemistry, 2005, 37(2):241-250
Gupta P, Rani R, Chandra A, et al. Potential applications of Pseudomonas sp. (strain CPSB21) to ameliorate Cr6+ stress and phytoremediation of tannery effluent contaminated agricultural soils[J]. Scientific Reports, 2018, 8(1):4860
Hemambika B, Balasubramanian V, Rajesh Kannan V, et al. Screening of chromium-resistant bacteria for plant growth-promoting activities[J]. Soil and Sediment Contamination, 2013, 22(7):717-736
Khan N, Mishra A, Chauhan P S, et al. Paenibacillus lentimorbus enhances growth of chickpea (Cicer arietinum L.) in chromium-amended soil[J]. Antonie Van Leeuwenhoek, 2012, 101(2):453-459
Morel M A, Ubalde M C, Braña V, et al. Delftia sp. JD2:A potential Cr(Ⅵ)-reducing agent with plant growth-promoting activity[J]. Archives of Microbiology, 2011, 193(1):63-68
Wani P A, Khan M S, Zaidi A. Chromium reduction, plant growth-promoting potentials, and metal solubilizatrion by Bacillus sp. isolated from alluvial soil[J]. Current Microbiology, 2007, 54(3):237-243
Vosatka M, Gryndler M, Prikryl Z. Effect of the rhizosphere bacterium Pseudomonas putida, arbuscular mycorrhizal fungi and substrate composition on the growth of strawberry[J]. Agronomie, 1992, 12(10):859-863
Todeschini V, AitLahmidi N, Mazzucco E, et al. Impact of beneficial microorganisms on strawberry growth, fruit production, nutritional quality, and volatilome[J]. Frontiers in Plant Science, 2018, 9:1611
曾加会, 李元媛, 阮迪申, 等. 植物根际促生菌及丛枝菌根真菌协助植物修复重金属污染土壤的机制[J]. 微生物学通报, 2017, 44(5):1214-1221Zeng J H, Li Y Y, Ruan D S, et al. Phytoremediation of heavy metal contaminated soils by plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi[J]. Microbiology China, 2017, 44(5):1214-1221(in Chinese)
Islam F, Yasmeen T, Arif M S, et al. Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants[J]. Plant Physiology and Biochemistry, 2016, 108:456-467
Xu Z Y, Ban Y H, Jiang Y H, et al. Arbuscular mycorrhizal fungi in wetland habitats and their application in constructed wetland:A review[J]. Pedosphere, 2016, 26(5):592-617
Lenoir I, Fontaine J, Lounès-Hadj Sahraoui A. Arbuscular mycorrhizal fungal responses to abiotic stresses:A review[J]. Phytochemistry, 2016, 123:4-15
Leyval C, Turnau K, Haselwandter K. Effect of heavy metal pollution on mycorrhizal colonization and function:Physiological, ecological and applied aspects[J]. Mycorrhiza, 1997, 7(3):139-153
Ferrol N, Tamayo E, Vargas P. The heavy metal paradox in arbuscular mycorrhizas:From mechanisms to biotechnological applications[J]. Journal of Experimental Botany, 2016, 67(22):6253-6265
Nakatani A S, Mescolotti D L C, Nogueira M A, et al. Dosage-dependent shift in the spore community of arbuscular mycorrhizal fungi following application of tannery sludge[J]. Mycorrhiza, 2011, 21(6):515-522
Coughlan A P, Dalpe Y, Lapointe L, et al. Soil pH-induced changes in root colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests[J]. Canadian Journal of Forest Research, 2000, 30(10):1543-1554
Wu S L, Hu Y J, Zhang X, et al. Chromium detoxification in arbuscular mycorrhizal symbiosis mediated by sulfur uptake and metabolism[J]. Environmental and Experimental Botany, 2018, 147:43-52
Singh S, Parihar P, Singh R, et al. Heavy metal tolerance in plants:Role of transcriptomics, proteomics, metabolomics, and ionomics[J]. Frontiers in Plant Science, 2015, 6:1143
Wu S L, Zhang X, Huang L B, et al. Arbuscular mycorrhiza and plant chromium tolerance[J]. Soil Ecology Letters, 2019, 1(3-4):94-104
Wang W X, Shi J C, Xie Q J, et al. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis[J]. Molecular Plant, 2017, 10(9):1147-1158
冯欢, 蒙盼盼, 豆青, 等. 菌根真菌与植物共生营养交换机制研究进展[J]. 应用生态学报, 2019, 30(10):3596-3604Feng H, Meng P P, Dou Q, et al. Advances in mechanisms of nutrient exchange between mycorrhizal fungi and host plants[J]. Chinese Journal of Applied Ecology, 2019, 30(10):3596-3604(in Chinese)
Tang N W, San Clemente H, Roy S, et al. A survey of the gene repertoire of Gigaspora rosea unravels conserved features among glomeromycota for obligate biotrophy[J]. Frontiers in Microbiology, 2016, 7:233
Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants[J]. Planta, 2002, 216(1):23-37
Bucher M. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces[J]. The New Phytologist, 2007, 173(1):11-26
Müller L M, Harrison M J. Phytohormones, miRNAs, and peptide signals integrate plant phosphorus status with arbuscular mycorrhizal symbiosis[J]. Current Opinion in Plant Biology, 2019, 50:132-139
Gil-Cardeza M L, Calonne-Salmon M, Gómez E, et al. Short-term chromium(Ⅵ) exposure increases phosphorus uptake by the extraradical mycelium of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833[J]. Chemosphere, 2017, 187:27-34
Benedetto A, Magurno F, Bonfante P, et al. Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae[J]. Mycorrhiza, 2005, 15(8):620-627
Xie X N, Lin H, Peng X W, et al. Arbuscular mycorrhizal symbiosis requires a phosphate transceptor in the Gigaspora margarita fungal symbiont[J]. Molecular Plant, 2016, 9(12):1583-1608
de Plassard C, Becquer A, Garcia K. Phosphorus transport in mycorrhiza:How far are we?[J]. Trends in Plant Science, 2019, 24(9):794-801
Wu S L, Chen B D, Sun Y Q, et al. Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon Pers.) is enhanced by arbuscular mycorrhiza in Cr(Ⅵ)-contaminated soils[J]. Environmental Toxicology and Chemistry, 2014, 33(9):2105-2113
陈保冬, 张莘, 伍松林, 等. 丛枝菌根影响土壤-植物系统中重金属迁移转化和累积过程的机制及其生态应用[J]. 岩矿测试, 2019, 38(1):1-25Chen B D, Zhang X, Wu S L, et al. The role of arbuscular mycorrhizal fungi in heavy metal translocation, transformation and accumulation in the soil-plant continuum:Underlying mechanisms and ecological implications[J]. Rock and Mineral Analysis, 2019, 38(1):1-25(in Chinese)
Costa R C, Moura F C, Oliveira P E, et al. Controlled reduction of red mud waste to produce active systems for environmental applications:Heterogeneous Fenton reaction and reduction of Cr(Ⅵ)[J]. Chemosphere, 2010, 78(9):1116-1120
Anjum N A, Ahmad I, Mohmood I, et al. Modulation of glutathione and its related enzymes in plants' responses to toxic metals and metalloids-A review[J]. Environmental and Experimental Botany, 2012, 75:307-324
Foyer C H, Noctor G. Oxidant and antioxidant signalling in plants:A re-evaluation of the concept of oxidative stress in a physiological context[J]. Plant, Cell and Environment, 2005, 28(8):1056-1071
沈亚琴, 魏源, 陈志鹏, 等. 锑胁迫下丛枝菌根真菌对玉米生长与锑吸收及抗氧化酶的影响[J]. 环境科学研究, 2017, 30(5):712-719Shen Y Q, Wei Y, Chen Z P, et al. Effects of arbuscular mycorrhizal fungi on growth, antimony uptake and antioxidant enzymes of maize under antimony stress[J]. Research of Environmental Sciences, 2017, 30(5):712-719(in Chinese)
Sharma V, Parmar P, Kumari N. Differential cadmium stress tolerance in wheat genotypes under mycorrhizal association[J]. Journal of Plant Nutrition, 2016, 39(14):2025-2036
Pallara G, Todeschini V, Lingua G, et al. Transcript analysis of stress defence genes in a white poplar clone inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and grown on a polluted soil[J]. Plant Physiology and Biochemistry, 2013, 63:131-139
Gil-Cardeza M L, Ferri A, Cornejo P, et al. Distribution of chromium species in a Cr-polluted soil:Presence of Cr(Ⅲ) in glomalin related protein fraction[J]. Science of the Total Environment, 2014, 493:828-833
Arias J A, Peralta-Videa J R, Ellzey J T, et al. Plant growth and metal distribution in tissues of Prosopis juliflora-velutina grown on chromium contaminated soil in the presence of Glomus deserticola[J]. Environmental Science & Technology, 2010, 44(19):7272-7279
Wu S L, Zhang X, Chen B D, et al. Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance[J]. Environmental and Experimental Botany, 2016, 122:10-18
Wu S L, Zhang X, Sun Y Q, et al. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses[J]. Journal of Hazardous Materials, 2016, 316:34-42
Holland S L, Avery S V. Chromate toxicity and the role of sulfur[J]. Metallomics:Integrated Biometal Science, 2011, 3(11):1119-1123
Wu S L, Zhang X, Chen B D, et al. Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance[J]. Environmental and Experimental Botany, 2016, 122:10-18
Wu S L, Zhang X, Sun Y Q, et al. Transformation and immobilization of chromium by arbuscular mycorrhizal fungi as revealed by SEM-EDS, TEM-EDS, and XAFS[J]. Environmental Science & Technology, 2015, 49(24):14036-14047
Schulz B, Boyle C, Draeger S, et al. Endophytic fungi:A source of novel biologically active secondary metabolites[J]. Mycological Research, 2002, 106(9):996-1004
Li H Y, Wei D Q, Shen M, et al. Endophytes and their role in phytoremediation[J]. Fungal Diversity, 2012, 54(1):11-18
Rozpądek P, Domka A, Ważny R, et al. How does the endophytic fungus Mucor sp. improve Arabidopsis arenosa vegetation in the degraded environment of a mine dump?[J]. Environmental and Experimental Botany, 2018, 147:31-42
Ent A, Baker A J M, Reeves R D, et al. Hyperaccumulators of metal and metalloid trace elements:Facts and fiction[J]. Plant and Soil, 2013, 362(1-2):319-334
Domka A M, Rozpaądek P, Turnau K. Are fungal endophytes merely mycorrhizal copycats? The role of fungal endophytes in the adaptation of plants to metal toxicity[J]. Frontiers in Microbiology, 2019, 10:371
Hardoim P R, van Overbeek L S, Berg G, et al. The hidden world within plants:Ecological and evolutionary considerations for defining functioning of microbial endophytes[J]. Microbiology and Molecular Biology Reviews, 2015, 79(3):293-320
Atsatt P R, Whiteside M D. Novel symbiotic protoplasts formed by endophytic fungi explain their hidden existence, lifestyle switching, and diversity within the plant kingdom[J]. PLoS One, 2014, 9(4):e95266
Sim C S F, Cheow Y L, Ng S L, et al. Discovering metal-tolerant endophytic fungi from the phytoremediator plant Phragmites[J]. Water, Air, & Soil Pollution, 2018, 229(3):1-11
Zhou Y, Li X, Gao Y, et al. Plant endophytes and arbuscular mycorrhizal fungi alter plant competition[J]. Functional Ecology, 2018, 32(5):1168-1179
Field K J, Rimington W R, Bidartondo M I, et al. Functional analysis of liverworts in dual symbiosis with Glomeromycota and Mucoromycotina fungi under a simulated Palaeozoic CO2 decline[J]. The ISME Journal, 2016, 10(6):1514-1526
Shanmugaiah V, Balasubramanian N, Gomathinayagam S, et al. Effect of single application of Trichoderma viride and Pseudomonas fluorescens on growth promotion in cotton plants[J]. African Journal of Agricultural Research, 2009, 4(11):1220-1225
Hiruma K, Gerlach N, Sacristán S, et al. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent[J]. Cell, 2016, 165(2):464-474
Agler M T, Ruhe J, Kroll S, et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation[J]. PLoS Biology, 2016, 14(1):e1002352
Purahong W, Hyde K D. Effects of fungal endophytes on grass and non-grass litter decomposition rates[J]. Fungal Diversity, 2011, 47(1):1-7
White J F, Kingsley K L, Verma S K, et al. Rhizophagy cycle:An oxidative process in plants for nutrient extraction from symbiotic microbes[J]. Microorganisms, 2018, 6(3):E95
Gadd G M. Fungal production of citric and oxalic acid:Importance in metal speciation, physiology and biogeochemical processes[J]. Advances in Microbial Physiology, 1999, 41:47-92
Devi L S, Joshi S R. Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi[J]. Journal of Microscopy and Ultrastructure, 2015, 3(1):29-37
Singh P, Kim Y J, Zhang D B, et al. Biological synthesis of nanoparticles from plants and microorganisms[J]. Trends in Biotechnology, 2016, 34(7):588-599
DalCorso G, Manara A, Furini A. An overview of heavy metal challenge in plants:From roots to shoots[J]. Metallomics:Integrated Biometal Science, 2013, 5(9):1117-1132
Zahoor M, Irshad M, Rahman H, et al. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7[J]. Ecotoxicology and Environmental Safety, 2017, 142:139-149
Na G, Salt D E. The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants[J]. Environmental and Experimental Botany, 2011, 72(1):18-25
Freeman J L, Persans M W, Ken N M, et al. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators[J]. The Plant Cell, 2004, 16(8):2176-2191
Zhao D K, Li T, Shen M, et al. Diverse strategies conferring extreme cadmium (Cd) tolerance in the dark septate endophyte (DSE), Exophiala pisciphila:Evidence from RNA-seq data[J]. Microbiological Research, 2015, 170:27-35
Adriaensen K, van der Lelie D, van Laere A, et al. A zinc-adapted fungus protects pines from zinc stress[J]. New Phytologist, 2004, 161(2):549-555
Tang Y Z, Shi L, Zhong K C, et al. Ectomycorrhizal fungi may not act as a barrier inhibiting host plant absorption of heavy metals[J]. Chemosphere, 2019, 215:115-123
Hartley J, Cairney J W G, Meharg A A. Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment?[J]. Plant and Soil, 1997, 189(2):303-319
Lastovetsky O A, Gaspar M L, Mondo S J, et al. Lipid metabolic changes in an early divergent fungus govern the establishment of a mutualistic symbiosis with endobacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(52):15102-15107
Uroz S, Calvaruso C, Turpault M P, et al. Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil[J]. Applied and Environmental Microbiology, 2007, 73(9):3019-3027
Fransson P, Andersson A, Norström S, et al. Ectomycorrhizal exudates and pre-exposure to elevated CO2 affects soil bacterial growth and community structure[J]. Fungal Ecology, 2016, 20:211-224
Krupa P, Kozdrój J. Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings[J]. Water, Air, and Soil Pollution, 2007, 182(1-4):83-90
Strandberg G W, Shumate S E, Parrott J R. Microbial cells as biosorbents for heavy metals:Accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa[J]. Applied and Environmental Microbiology, 1981, 41(1):237-245
Gadd G M. Interactions of Fungi with Toxic Metals[M]//The Genus Aspergillus. Boston:Springer US, 1994:361-374
Fogarty R V, Tobin J M. Fungal melanins and their interactions with metals[J]. Enzyme and Microbial Technology, 1996, 19(4):311-317
Bhanoori M, Venkateswerlu G. In vivo chitin-cadmium complexation in cell wall of Neurospora crassa[J]. Biochimica et Biophysica Acta, 2000, 1523(1):21-28
Martino E, Coisson J D, Lacourt I, et al. Influence of heavy metals on production and activity of pectinolytic enzymes in ericoid mycorrhizal fungi[J]. Mycological Research, 2000, 104(7):825-833
Ashford A E, Allaway C A, Peterson C A, et al. Nutrient transfer and the fungus-root interface[J]. Functional Plant Biology, 1989, 16(1):85
Fomina M A, Alexander I J, Colpaert J V, et al. Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi[J]. Soil Biology and Biochemistry, 2005, 37(5):851-866
Meharg A A. The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations[J]. Mycological Research, 2003, 107(11):1253-1265
Colpaert J V, Assche J A. The effects of cadmium on ectomycorrhizal Pinus sylvestris L.[J]. New Phytologist, 1993, 123(2):325-333
Jones M D, Hutchinson T C. The effect of mycorrhizal infection on the response of Betula papyrifera to nickel and copper[J]. New Phytologist, 1986, 102(3):429-442
Denny H J, Wilkins D A. Zinc tolerance in Betula spp. Ⅳ. The mechanism of ectomycorrhizal amelioration of zinc toxicity[J]. New Phytologist, 1987, 106(3):545-553
Ashford A E, Peterson R L, Dwarte D, et al. Polyphosphate granules in eucalypt mycorrhizas:Determination by energy dispersive X-ray microanalysis[J]. Canadian Journal of Botany, 1986, 64(3):677-687
Zarb J, Walters D R. Polyamine biosynthesis in the ectomycorrhizal fungus Paxillus involutus exposed to lead[J]. Mycological Research, 1996, 100(4):486-488
Bellion M, Courbot M, Jacob C, et al. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi[J]. FEMS Microbiology Letters, 2006, 254(2):173-181
Trotter E W, Grant C M. Thioredoxins are required for protection against a reductive stress in the yeast Saccharomyces cerevisiae[J]. Molecular Microbiology, 2002, 46(3):869-878
Ott T, Fritz E, Polle A, et al. Characterisation of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium[J]. FEMS Microbiology Ecology, 2002, 42(3):359-366
Kalsotra T, Khullar S, Agnihotri R, et al. Metal induction of two metallothionein genes in the ectomycorrhizal fungus Suillus himalayensis and their role in metal tolerance[J]. Microbiology, 2018, 164(6):868-876
Colpaert J V, Wevers J H L, Krznaric E, et al. How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution[J]. Annals of Forest Science, 2011, 68(1):17-24
Wężowicz K, Rozpądek P, Turnau K. The diversity of endophytic fungi in Verbascum lychnitis from industrial areas[J]. Symbiosis, 2014, 64(3):139-147

相关话题/微生物 植物 土壤 生态 北京