删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于土壤气挥发通量的污染场地三氯甲烷健康风险评估

本站小编 Free考研考试/2021-12-30

李卫东1,2,
张超艳1,
郭晓欣1,
熊杰1,
周友亚1,,,
李海明2,,,
姜林3,,
1. 生态环境部土壤与农业农村生态环境监管技术中心, 北京 100012;
2. 天津科技大学海洋与环境学院, 天津 300457;
3. 北京市环境保护科学研究院, 北京 100037
作者简介: 李卫东(1997-),男,硕士研究生,研究方向为污染场地健康风险评估,E-mail:18234401124@163.com.
通讯作者: 周友亚,zhouyy@craes.org.cn ; 李海明,lhm99044@163.com ; 姜林,jianglin@cee.cn
基金项目: 国家自然科学基金资助项目(41977377);国家重点研发计划(土壤专项)项目(2018YFC1803001)


中图分类号: X171.5


Health Risk Assessment of Trichloromethane at Contaminated Sites Based on Soil Gas Volatilization Fluxes

Li Weidong1,2,
Zhang Chaoyan1,
Guo Xiaoxin1,
Xiong Jie1,
Zhou Youya1,,,
Li Haiming2,,,
Jiang Lin3,,
1. Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China;
2. College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China;
3. Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
Corresponding authors: Zhou Youya,zhouyy@craes.org.cn ; Li Haiming,lhm99044@163.com ; Jiang Lin,jianglin@cee.cn

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(35)
相关文章
施引文献
资源附件(0)
访问统计

摘要:我国现行技术导则在评估VOCs呼吸暴露途径健康风险时推荐Johnson-Ettinger(J&E)模型,该模型虽然简单易用,但在实际应用中存在过于保守的问题,采用双元平衡模型(dual equilibrium desorption,DED)对J&E模型进行校正后可以在一定程度上克服该问题。为准确评估实际场地中VOCs呼吸暴露风险,探索JE-DED模型在预测实际场地中VOCs呼吸暴露途径健康风险的适用性,选取苏州某污染场地面积约314 m2的重污染区域开展三氯甲烷土壤气挥发通量研究进行精细化风险评估,并与基于土壤中三氯甲烷浓度采用J&E模型和JE-DED模型的计算结果进行比较。多手段风险评估结果显示,评价区域三氯甲烷呼吸暴露途径的人体致癌健康风险水平超过可接受水平1.00×10-6;就本场地而言,相对于基于土壤浓度风险评估,以基于实测土壤气挥发通量的风险评估结果来表征研究区域整体暴露风险水平更加稳定;研究区域土壤三氯甲烷浓度整体偏高,J&E和JE-DED模型计算的风险水平无明显差异;通过数据模拟发现,针对该场地,当三氯甲烷浓度<6 mg·kg-1时,能更好地发挥JE-DED模型的优势。该场地三氯甲烷健康风险评估结果表明,基于实测土壤气挥发通量能够一定程度上避免基于土壤浓度计算带来的偶然性结果;JE-DED模型在较低浓度时,才能发挥优势。
关键词: 三氯甲烷/
污染场地/
风险评估/
挥发通量/
J&E模型/
JE-DED模型

Abstract:The Johnson-Ettinger (J&E) model is recommended by the current technical guidance of China to assess the health risks of VOCs' respiratory exposure. It is easy to use but too conservative for practical applications. The problem can be overcome to some extent by adopting the dual equilibrium desorption (DED) correction of J&E model. In order to accurately evaluate the risk posed by respiratory exposure of VOCs and test the applicability of the JE-DED model in predicting this risk in a real-world scenario, a detailed risk assessment was carried out in a polluted area of about 314 m2 in Suzhou, China. The results using the J&E model and the JE-DED model based on the concentration of trichloromethane in soil were compared. The results are as follows:(1) Multiple risk assessments showed that the human carcinogenic health risk level from chloroform respiratory exposure in this region was higher than the acceptable level of 1.00×10-6. (2) Compared with the risk assessment based on soil concentration, the risk assessment based on the measured soil air volatilization flux could more stably represent the overall exposure risk for the evaluation area. (3) No significant difference existed in the risk levels calculated by the J&E and the JE-DED models when based on soil trichloromethane concentrations. Data simulation results show that the advantages of JE-DED model are more pronounced when the concentration of trichloromethane is less than 6 mg·kg-1 for this site. The results suggest that measuring soil air volatilization flux can avoid inaccurate results based on soil concentration calculations to a certain extent, and that the JE-DED model is advantageous at lower contaminant concentration.
Key words:trichloromethane/
contaminated site/
risk assessment/
volatile flux/
J&E model/
JE-DED model.

加载中
周友亚, 姜林, 张超艳, 等. 我国污染场地风险评估发展历程概述[J]. 环境保护, 2019, 47(8):34-38Zhou Y Y, Jiang L, Zhang C Y, et al. Development of risk assessment of contaminated sites in China[J]. Environmental Protection, 2019, 47(8):34-38(in Chinese)
Zhao X, Ma H, Lu J, et al. Characteristics and source apportionment of volatile organic compounds during the remediation of contaminated sites in Zhenjiang, China[J]. International Journal of Environmental Science and Technology, 2020:1-12
Liu G, Shi Y, Guo G L, et al. Soil pollution characteristics and systemic environmental risk assessment of a large-scale arsenic slag contaminated site[J]. Journal of Cleaner Production, 2020, 251:119721
Elsner M, Couloume G L, Mancini S, et al. Carbon isotope analysis to evaluate nanoscale Fe(O) treatment at a chlorohydrocarbon contaminated site[J]. Ground Water Monitoring & Remediation, 2010, 30(3):79-95
Fang C, Behr M, Xie F, et al. Mechanism of chloroform-induced renal toxicity:Non-involvement of hepatic cytochrome P450-dependent metabolism[J]. Toxicology and Applied Pharmacology, 2008, 227(1):48-55
Zhou Y, Wu H J, Zhang Y H, et al. Ionic mechanisms underlying cardiac toxicity of the organochloride solvent trichloromethane[J]. Toxicology, 2011, 290(2-3):295-304
Scheepers P T J, Graumans M H F, van Dael M, et al. Intrusion of chlorinated hydrocarbons and their degradation products from contaminated soil. Measurement of indoor air quality and biomonitoring by analysis of end-exhaled air[J]. Science of the Total Environment, 2019, 653:223-230
United States Environmental Protection Agency (US EPA). Office of Solid Waste and Emergency Response technical guide for assessing and mitigating the vapor intrusion pathway from subsurface vapor sources to indoor air[R]. Washington D C:Office of Solid Waste and Emergency Response, 2015
United States Environmental Protection Agency (US EPA). Technical guide for addressing petroleum vapor intrusion at leaking underground storage tank sites[S]. Washington D C:Office of Underground Storage Tanks, 2015
Ma J, McHugh T, Beckley L, et al. Vapor intrusion investigations and decision-making:A critical review[J]. Environmental Science & Technology, 2020, 54(12):7050-7069
McHugh T, Loll P, Eklund B. Recent advances in vapor intrusion site investigations[J]. Journal of Environmental Management, 2017, 204:783-792
中华人民共和国生态环境部. 建设用地土壤污染风险评估技术导则:HJ 25.3-2019[S]. 北京:中国环境科学出版社
Zhang R H, Jiang L, Zhong M S, et al. Applicability of soil concentration for VOC-contaminated site assessments explored using field data from the Beijing-Tianjin-Hebei urban agglomeration[J]. Environmental Science & Technology, 2019, 53(2):789-797
Kan A T, Fu G, Hunter M, et al. Irreversible sorption of neutral hydrocarbons to sediments:Experimental observations and model predictions[J]. Environmental Science & Technology, 1998, 32(7):892-902
姜林, 钟茂生, 夏天翔, 等. 基于土壤气中实测苯浓度的健康风险评价[J]. 环境科学研究, 2012, 25(6):717-723Jiang L, Zhong M S, Xia T X, et al. Health risk assessment based on benzene concentration detected in soil gas[J]. Research of Environmental Sciences, 2012, 25(6):717-723(in Chinese)
Chen W, Kan A T, Newell C J, et al. More realistic soil cleanup standards with dual-equilibrium desorption[J]. Ground Water, 2002, 40(2):153-164
Chen W, Kan A T, Fu G M, et al. Adsorption-desorption behaviors of hydrophobic organic compounds in sediments of Lake Charles, Louisiana, USA[J]. Environmental Toxicology and Chemistry, 1999, 18(8):1610-1616
罗晓丽, 齐亚超, 张承东, 等. 多环芳烃在中国两种典型土壤中的吸附和解吸行为研究[J]. 环境科学学报, 2008, 28(7):1375-1380Luo X L, Qi Y C, Zhang C D, et al. Sorption and desorption of polycyclic aromatic hydrocarbons in two typical Chinese soils[J].Acta Scientiae Circumstantiae, 2008, 28(7):1375-1380(in Chinese)
Smith J A,Chiou C T, Kammer J A, et al. Effect of soil moisture on the sorption of trichloroethene vapor to vadose-zone soil at Picatinny Arsenal, New Jersey[J]. Environmental Science & Technology, 1990, 24(5):676-683
McNeel P J, Dibley V. Case study comparisons of vapor inhalation risk estimates:ASTM RBCA model prediction vs specific soil vapor data[R]. Washington DC:Lawrencen Livermore National Laboratory, 1997
Healy R M, Wang J M, Karellas N S, et al. Assessment of a passive sampling method and two on-line gas chromatographs for the measurement of benzene, toluene, ethylbenzene and xylenes in ambient air at a highway site[J]. Atmospheric Pollution Research, 2019, 10(4):1123-1127
Schreiner V C, Bakanov N, Kattwinkel M, et al. Sampling rates for passive samplers exposed to a field-relevant peak of 42 organic pesticides[J]. Science of the Total Environment, 2020, 740:140376
Woolfenden E. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1:Sorbent-based air monitoring options[J]. Journal of Chromatography A, 2010, 1217(16):2674-2684
Healy R M, Bennett J, Wang J M, et al. Evaluation of a passive sampling method for long-term continuous monitoring of volatile organic compounds in urban environments[J]. Environmental Science & Technology, 2018, 52(18):10580-10589
Gilman J B, Lerner B M,Kuster W C, et al. Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US[J]. Atmospheric Chemistry and Physics, 2015, 15(24):13915-13938
Walgraeve C, Demeestere K, Dewulf J, et al. Diffusive sampling of 25 volatile organic compounds in indoor air:Uptake rate determination and application in Flemish homes for the elderly[J]. Atmospheric Environment, 2011, 45(32):5828-5836
中华人民共和国环境保护部.土壤环境质量建设用地土壤污染风险管控标准:GB36600-2018[S]. 北京:中国环境科学出版社, 2018
中华人民共和国环境保护部. 土壤和沉积物挥发性有机物的测定吹扫捕集/气相色谱-质谱法:HJ 605-2011[S]. 北京:中国环境科学出版社, 2011
Seethapathy S, Górecki T. Polydimethylsiloxane-based permeation passive air sampler. Part I:Calibration constants and their relation to retention indices of the analytes[J]. Journal of Chromatography A, 2011, 1218(1):143-155
中华人民共和国环境保护部. 环境空气挥发性卤代烃的测定活性炭吸附-二硫化碳解吸/气相色谱法:HJ 645-2013[S]. 北京:中国环境科学出版社, 2013
钟茂生, 赵莹, 姜林. 采用球形被动式采样器测定土壤气体挥发通量的方法:CN106053288A. 2016-10-26
武晓峰, 谢磊. Johnson & Ettinger模型和Volasoil模型在污染物室内挥发风险评价中的应用和比较[J]. 环境科学学报, 2012, 32(4):984-991Wu X F, Xie L. Comparative study on Johnson & Ettinger model and Volasoil model in the indoor volatilization risk assessment of contaminant[J]. Acta Scientiae Circumstantiae, 2012, 32(4):984-991(in Chinese)
张瑞环, 钟茂生, 姜林, 等. 基于DED模型的挥发性有机物健康风险评价[J]. 环境科学研究, 2018, 31(1):170-178Zhang R H, Zhong M S, Jiang L, et al. Health risk assessment of volatile organic compounds based on DED model[J]. Research of Environmental Sciences, 2018, 31(1):170-178(in Chinese)
Holton C, Luo H, Dahlen P, et al. Temporal variability of indoor air concentrations under natural conditions in a house overlying a dilute chlorinated solvent groundwater plume[J]. Environmental Science & Technology, 2013, 47(23):13347-13354
Ström J G V, Guo Y M, Yao Y J, et al. Factors affecting temporal variations in vapor intrusion-induced indoor air contaminant concentrations[J]. Building and Environment, 2019, 161:106196

相关话题/土壤 环境科学 健康 污染 北京