删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

四溴双酚A对人体正常肝细胞毒性效应及作用机制

本站小编 Free考研考试/2021-12-30

王晓丽1,2,
张运超1,
夏沪彬1,
陈超2,
刘勇弟1,,
1. 华东理工大学资源与环境工程学院, 上海 200237;
2. 华东理工大学生物工程学院, 上海 200237
作者简介: 王晓丽(1980-),女,助理研究员,研究方向为环境毒理学,E-mail:xlwang@ecust.edu.cn.
通讯作者: 刘勇弟,ydliu@ecust.edu.cn
基金项目: 国家重点研发计划资助项目(2016YFC0206200);中国环境科学研究院环境基准与风险评估国家重点实验室开放基金(SKLECRA2016OFP19);国家自然科学基金资助项目(41877377,51578240);上海市学术/技术研究带头人项目(18XD1424100)


中图分类号: X171.5


Toxic Effects and Mechanism of Tetrabromobisphenol A on Human Normal Liver Cells L02

Wang Xiaoli1,2,
Zhang Yunchao1,
Xia Hubin1,
Chen Chao2,
Liu Yongdi1,,
1. School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China;
2. School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
Corresponding author: Liu Yongdi,ydliu@ecust.edu.cn

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(32)
相关文章
施引文献
资源附件(0)
访问统计

摘要:四溴双酚A(TBBPA)作为目前用量最大的一种溴系阻燃剂,在含TBBPA用品的生产、使用和废弃处置过程中,能够通过多种途径进入环境介质,造成持久性污染,危害生态系统和人体健康。为探明TBBPA对人体健康的潜在毒性效应及作用机制,选取人体正常肝细胞L02作为模型,通过分析暴露后细胞形态、存活率、胞内活性氧(ROS)含量、DNA损伤及细胞凋亡等变化。结果表明,TBBPA暴露导致L02细胞形态发生明显改变、存活率显著降低,细胞彗星实验拖尾现象明显增强;随着暴露浓度的升高,L02细胞胞内ROS含量、丙二醛(MDA)含量和氧化型谷胱甘肽/还原型谷胱甘肽(GSSG/GSH)比值均呈现剂量依赖性增加。40 μmol·L-1暴露条件下胞内ROS含量升高3.1倍;20 μmol·L-1和40 μmol·L-1暴露条件下,细胞凋亡率分别增加了3.2倍和4.8倍。推测TBBPA暴露对L02细胞的毒性效应作用机制为,暴露引起细胞氧化应激水平升高,ROS升高再引起DNA损伤程度增强,最终导致细胞凋亡率增加。上述研究结果将为评估TBBPA的毒性效应和健康风险提供科学依据。
关键词: TBBPA/
L02细胞/
氧化应激/
细胞凋亡

Abstract:Tetrabromobisphenol A (TBBPA) has become one of the most widely used brominated flame retardants. During the production, application and waste disposal of materials containing TBBPA, TBBPA can enter the environment through several ways, and result in the persistent organic pollution, which is harmful to the ecosystem and human health. In order to explore the potentially toxic effects of TBBPA on human health, L02 selected as model cells were exposed to TBBPA, and their morphology, survival rate, intracellular reactive oxygen species (ROS) content, DNA damage and apoptosis levels were detected. The results showed that the cellular morphology was changed, the survival rate was reduced significantly by TBBPA at the exposed concentration more than 10 μmol·L-1. And the trailing phenomenon of cell comet experiment was significantly enhanced. The intracellular ROS content, malondialdehyde (MDA) content and the ratio of oxidized/reduced glutathione (GSSG/GSH) increased with the concentration of TBBPA in well dose-dependent manner. The intracellular ROS content, MDA content and GSSG/GSH ratio increased by 3.1, 3.3 and 7.5 times, respectively, at the exposed concentration of 40 μmol·L-1. The apoptosis rate increased by 3.2 and 4.8 times at the exposed concentration of 20 μmol·L-1 and 40 μmol·L-1, respectively. It is speculated that the increase of TBBPA concentration induce the increase of ROS level which enhanced the DNA damage and eventually leaded to the increase of apoptosis rate. The results presented in this study will provide basic data for evaluating the toxic effects and health risk of TBBPA.
Key words:TBBPA/
human normal hepatocytes/
oxidative stress/
apoptosis.

加载中
Covaci A, Voorspoels S, Abdallah M A, et al. Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives[J]. Journal of Chromatography A, 2009, 1216(3):346-363
Yu C H, Hu B. Novel combined stir bar sorptive extraction coupled with ultrasonic assisted extraction for the determination of brominated flame retardants in environmental samples using high performance liquid chromatography[J]. Journal of Chromatography A, 2007, 1160(1-2):71-80
彭浩, 金军, 王英, 等. 液相色谱-电喷雾离子阱质谱分析土壤中四溴双酚-A[J]. 分析化学, 2007, 35(4):549-551Peng H, Jin J, Wang Y, et al. Determination of tetrabromobisphenol-A in soil by high performance liquid chromatography-electrospray ion trap mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2007, 35(4):549-551(in Chinese)
Öberg K, Warman K, Öberg T. Distribution and levels of brominated flame retardants in sewage sludge[J]. Chemosphere, 2002, 48(8):805-809
Liu K, Li J, Yan S J, et al. A review of status of tetrabromobisphenol A (TBBPA) in China[J]. Chemosphere, 2016, 148:8-20
Watanabe I, Kashimoto T, Tatsukawa R. Identification of the flame retardant tetrabromobisphenol-A in the river sediment and the mussel collected in Osaka[J]. Bulletin of Environmental Contamination and Toxicology, 1983, 31(1):48-52
Chu S G, Haffner G D, Letcher R J. Simultaneous determination of tetrabromobisphenol A, tetrachlorobisphenol A, bisphenol A and other halogenated analogues in sediment and sludge by high performance liquid chromatography-electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2005, 1097(1-2):25-32
Saint-Louis R, Pelletier E. LC-ESI-MS-MS method for the analysis of tetrabromobisphenol A in sediment and sewage sludge[J]. The Analyst, 2004, 129(8):724-730
Zhang X L, Luo X J, Chen S J, et al. Spatial distribution and vertical profile of polybrominated diphenyl ethers, tetrabromobisphenol A, and decabromodiphenylethane in river sediment from an industrialized region of South China[J]. Environmental Pollution, 2009, 157(6):1917-1923
Takigami H, Suzuki G, Hirai Y, et al. Brominated flame retardants and other polyhalogenated compounds in indoor air and dust from two houses in Japan[J]. Chemosphere, 2009, 76(2):270-277
Herzke D, Berger U, Kallenborn R, et al. Brominated flame retardants and other organobromines in Norwegian predatory bird eggs[J]. Chemosphere, 2005, 61(3):441-449
Law R J, Bersuder P, Barry J, et al. A significant downturn in levels of hexabromocyclododecane in the blubber of harbor porpoises (Phocoena phocoena) stranded or bycaught in the UK:An update to 2006[J]. Environmental Science & Technology, 2008, 42(24):9104-9109
Shi Z X, Wu Y N, Li J G, et al. Dietary exposure assessment of Chinese adults and nursing infants to tetrabromobisphenol-A and hexabromocyclododecanes:Occurrence measurements in foods and human milk[J]. Environmental Science & Technology, 2009, 43(12):4314-4319
Kitamura S, Kato T, Iida M, et al. Anti-thyroid hormonal activity of tetrabromobisphenol A, a flame retardant, and related compounds:Affinity to the mammalian thyroid hormone receptor, and effect on tadpole metamorphosis[J]. Life Sciences, 2005, 76(14):1589-1601
Lilienthal H, Verwer C M, van der Ven L T, et al. Exposure to tetrabromobisphenol A (TBBPA) in Wistar rats:Neurobehavioral effects in offspring from a one-generation reproduction study[J]. Toxicology, 2008, 246(1):45-54
Kuiper R V, Brandhof E J, Leonards P E G, et al. Toxicity of tetrabromobisphenol A (TBBPA) in zebrafish (Danio rerio) in a partial life-cycle test[J]. Archives of Toxicology, 2007, 81(1):1-9
姚志刚, 赵凤娟. 遗传学[M]. 2版. 北京:化学工业出版社, 2015:182-186
Tada Y, Fujitani T, Ogata A, et al. Flame retardant tetrabromobisphenol A induced hepatic changes in ICR male mice[J]. Environmental Toxicology and Pharmacology, 2007, 23(2):174-178
Nakagawa Y, Suzuki T, Ishii H, et al. Biotransformation and cytotoxicity of a brominated flame retardant, tetrabromobisphenol A, and its analogues in rat hepatocytes[J]. Xenobiotica, 2007, 37(7):693-708
Lenart J, Zieminska E, Diamandakis D, et al. Altered expression of genes involved in programmed cell death in primary cultured rat cerebellar granule cells acutely challenged with tetrabromobisphenol A[J]. Neurotoxicology, 2017, 63:126-136
Suh K S, Choi E M, Rhee S Y, et al. Tetrabromobisphenol A induces cellular damages in pancreatic β-cells in vitro[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2017, 52(7):624-631
Grasselli E, Cortese K, Fabbri R, et al. Thyromimetic actions of tetrabromobisphenol A (TBBPA) in steatotic FaO rat hepatoma cells[J]. Chemosphere, 2014, 112:511-518
Wikoff D S, Birnbaum L. Human Health Effects of Brominated Flame Retardants[M]//Handbook of Environmental Chemistry. Springer, 2011:19-53
向明灯, 李良忠, 玉琳, 等. 四溴双酚A对HepG2细胞线粒体膜电位及凋亡的影响[J]. 环境卫生学杂志, 2015, 5(1):6-9,13 Xiang M D, Li L Z, Yu L, et al. Effect of tetrabromobisphenol A on mitochondrial membrane potential and apoptosis of HepG2 cells[J]. Journal of Environmental Hygiene, 2015, 5(1):6-9,13(in Chinese)
张蔓, 郑敏, 吴智君, 等. 二甲基甲酰胺对大鼠肝脏抗氧化能力及PPAR mRNA的影响[J]. 卫生研究, 2018, 47(3):352-357Zhang M, Zheng M, Wu Z J, et al. Effects of N, N-dimethylformamide on hepatic antioxidant capacity and liver PPARs mRNA levels in rats[J]. Journal of Hygiene Research, 2018, 47(3):352-357(in Chinese)
Chen H M, Tang X X, Zhou B, et al. Mechanism of Deca-BDE-induced apoptosis in Neuro-2a cells:Role of death-receptor pathway and reactive oxygen species-mediated mitochondrial pathway[J]. Journal of Environmental Sciences, 2016, 46:241-251
Chang C Y, Shen C Y, Kang C K, et al. Taurine protects HK-2 cells from oxidized LDL-induced cytotoxicity via the ROS-mediated mitochondrial and p53-related apoptotic pathways[J]. Toxicology and Applied Pharmacology, 2014, 279(3):351-363
Pearson G A, MacKenzie I Z. Factors that influence the incision-delivery interval at caesarean section and the impact on the neonate:A prospective cohort study[J]. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 2013, 169(2):197-201
Rodríguez-González J, Wilkins-Rodríguez A A, Gutiérrez-Kobeh L. Role of glutathione, ROS, and Bcl-xL in the inhibition of apoptosis of monocyte-derived dendritic cells by Leishmania mexicana promastigotes[J]. Parasitology Research, 2018, 117(4):1225-1235
Circu M L, Aw T Y. Reactive oxygen species, cellular redox systems, and apoptosis[J]. Free Radical Biology & Medicine, 2010, 48(6):749-762
Evans J L, Goldfine I D, Maddux B A, et al. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction?[J]. Diabetes, 2003, 52(1):1-8
Zhao F, Wang J, Fang Y J, et al. Effects of tris(1,3-dichloro-2-propyl)phosphate on pathomorphology and gene/protein expression related to thyroid disruption in rats[J]. Toxicology Research, 2016, 5(3):921-930

相关话题/细胞 环境 华东理工大学 资源 上海