删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

拉萨河放射性核素238U和232Th分布特征及健康风险评估

本站小编 Free考研考试/2021-12-30

秦欢欢1,2,,,
高柏2,
黄碧贤2,
张诗倩2,
刘昕瑀2
1. 东华理工大学核资源与环境国家重点实验室, 南昌 330013;
2. 东华理工大学水资源与环境工程学院, 南昌 330013
作者简介: 秦欢欢(1986-),男,博士,副教授,研究方向为水体污染防治和地下水污染模拟,E-mail:qhhasn@126.com.
通讯作者: 秦欢欢,qhhasn@126.com ;
基金项目: 国家自然科学基金资助项目(41807179);江西省科技厅项目“气候变化和人类活动下拉萨河水文地球化学特征及其环境影响研究与技术示范”


中图分类号: X820.4


Distribution and Health Risk Assessment of Radionuclides 238U and 232Th in Lhasa River

Qin Huanhuan1,2,,,
Gao Bai2,
Huang Bixian2,
Zhang Shiqian2,
Liu Xinyu2
1. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China;
2. School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China
Corresponding author: Qin Huanhuan,qhhasn@126.com ;

CLC number: X820.4

-->

摘要
HTML全文
(0)(0)
参考文献(35)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为了解拉萨河中放射性核素238U和232Th的污染水平及其对人类的致癌风险,利用拉萨河中下游和堆龙曲支流16个采样点水样的238U和232Th含量,采取美国环境保护局(U.S.Environmental Protection Agency,US EPA)推荐的放射性核素健康风险评价方法,评估不同年龄人群因饮水途径摄入核素的致癌风险。结果表明,拉萨河中238U和232Th平均活度浓度分别为(2.62±3.46)×10-2 Bq·L-1和(2.3±0.478)×10-3 Bq·L-1,比我国地表水平均值分别高31%和低61.7%;238U和232Th含量沿程分别呈波动稳定和波动变化的趋势;不同人群平均总致癌风险分别为(4.81±4.61)×10-8(幼儿组)、(2.29±1.81)×10-8(少年组)和(3.08±2.13)×10-8 a-1(成年组),均低于1×10-6 a-1(US EPA标准)和我国地表水平均致癌风险值,但对幼儿的致癌危害最大;238U和232Th的致癌风险贡献率随年龄的增长分别下降和上升;建议对羊八井镇附近河水进行持续监测,确保地热资源开发不会造成拉萨河放射性核素的污染。本研究不仅可以为拉萨河放射性核素污染的研究提供参考,而且可以为拉萨河未来的环境保护提供科学依据。
关键词: 放射性核素/
拉萨河/
健康风险评估/
分布特征

Abstract:In order to understand the pollution level of radionuclides 238U and 232Th and their carcinogenic risks to human beings in Lhasa River, the 238U and 232Th contents of water samples collected from 16 sampling points in the middle and lower reaches and the Doilungqu tributary of Lhasa River were measured. The radionuclide health risk assessment method recommended by the U.S. Environmental Protection Agency (US EPA) was used to assess the carcinogenic risk caused by the intake of radionuclides in drinking water by different age groups. The results showed that the average activity concentrations of 238U and 232Th in Lhasa River were (2.62±3.46)×10-2 Bq·L-1 and (2.3±0.478)×10-3 Bq·L-1, respectively. The contents of 238U and 232Th were 31% higher and 61.7% lower than the national average level of surface water, respectively. The content of 238U fluctuated steadily along the way while the content of 232Th fluctuated along the way. The average total risk of cancer in different populations was (4.81±4.61)×10-8 (children group), (2.29±1.81)×10-8 (juvenile group) and (3.08±2.13)×10-8 a-1 (adult group), respectively, all of which are lower than 1×10-6 a-1 (US EPA standard) and the national surface water carcinogenic risk average values. The carcinogenic risk of Lhasa River is the highest to children. The contribution rate of carcinogenic risk of 238U decreases with the increase of age, while that of 232Th increases with the increase of age. It is suggested to monitor the river water near Yangbajing Town continuously to ensure that the development of geothermal resources will not cause radionuclide pollution in Lhasa River. This study can not only provide a reference for the study of radionuclide pollution in Lhasa River, but also provide a scientific basis for the future environmental protection of Lhasa River.
Key words:radionuclide/
Lhasa River/
health risk assessment/
distribution characteristics.

加载中
鞠金欣, 薛茹, 陈尔东. 生活饮用水中放射性核素指导水平的探讨[J]. 中国辐射卫生, 2016, 25(2):163-166Ju J X, Xue R, Chen E D. Study on guidance levels for radionuclides in drinking water[J]. Chinese Journal of Radiological Health, 2016, 25(2):163-166(in Chinese)
肖峰. 湘江衡阳段水中天然放射性核素调查[D]. 衡阳:南华大学, 2018:2-6 Xiao F. The survey of natural radioactive elements of Xiang Jiang section in Xiang Jiang River[D]. Hengyang:University of South China, 2018:2-6(in Chinese)
涂彧, 俞荣生, 张海江, 等. 苏州市区各种水体中总放射性水平检测及评价[J]. 工业卫生与职业病, 2005, 31(5):301-304Tu Y, Yu R S, Zhang H J, et al. Measurement and evaluation of total radioactivity in water bodies of Suzhou City[J]. Industrial Health and Occupational Diseases, 2005, 31(5):301-304(in Chinese)
孙亚茹, 武云云, 万玲, 等. 北京市生活饮用水放射性水平调查分析[J]. 首都公共卫生, 2014, 8(4):155-157Sun Y R, Wu Y Y, Wan L, et al. Investigation and analysis of radioactivity level of drinking water in Beijing[J]. Capital Journal of Public Health, 2014, 8(4):155-157(in Chinese)
Brenner D J, Doll R, Goodhead D T, et al. Cancer risks attributable to low doses of ionizing radiation:Assessing what we really know[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(24):13761-13766
Singh B, Garg V K, Yadav P, et al. Uranium in groundwater from Western Haryana, India[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 301(2):427-433
哈日巴拉, 拓飞, 胡碧涛, 等. 巴彦乌拉铀矿周围饮用水中放射性及健康风险[J]. 中国环境科学, 2017, 37(9):3583-3590
Fatima I, Zaidi J H, Arif M, et al. Measurement of natural radioactivity in bottled drinking water in Pakistan and consequent dose estimates[J]. Radiation Protection Dosimetry, 2007, 123(2):234-240
丁小燕, 张春艳, 高柏, 等. 临水河放射性核素的分布特征及评价[J]. 有色金属(冶炼部分), 2017(2):59-62, 70 Ding X Y, Zhang C Y, Gao B, et al. Distribution characteristics and evaluation of radioactivity in Linshui River[J]. Nonferrous Metals (Extractive Metallurgy), 2017(2):59-62, 70(in Chinese)
杜金秋, 关道明, 姚子伟, 等. 大连近海沉积物中放射性核素分布及环境指示[J]. 中国环境科学, 2017, 37(5):1889-1895Du J Q, Guan D M, Yao Z W, et al. Distribution and environmental significances of radionuclides in sediments of Dalian coastal area[J]. China Environmental Science, 2017, 37(5):1889-1895(in Chinese)
施宸皓, 梁婕, 曾光明, 等. 某废弃铀矿周边农田土壤重金属和放射性元素的风险分析和修复措施[J]. 环境工程学报, 2018, 12(1):213-219Shi C H, Liang J, Zeng G M, et al. Assessment of heavy metal and radionuclide pollution risk in farmland around an abandoned uranium mine and its related remediation measures[J]. Chinese Journal of Environmental Engineering, 2018, 12(1):213-219(in Chinese)
Malakootian M, Khashi Z, Iranmanesh F, et al. Radon concentration in drinking water in villages nearby Rafsanjan fault and evaluation the annual effective dose[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 302(3):1167-1176
梁晓军, 宋文磊, 李建, 等. 饮用水放射性污染现状及健康风险评价研究进展[J]. 职业与健康, 2015, 31(3):417-419Liang X J, Song W L, Li J, et al. Research progress on drinking water radioactivity pollution and its health risk assessment[J]. Occupation and Health, 2015, 31(3):417-419(in Chinese)
李福生, 陈英民, 陈跃, 等. 小清河河水中的放射性水平及变化规律[J]. 中国辐射卫生, 2000, 9(2):86-87
马庆录, 刘文华, 朱婀娜, 等. 青海湖环境中放性核素水平与卫生学评价[J]. 中国公共卫生, 2005, 21(1):58-59
曹敬丽, 许家昂, 陈英民, 等. 南水北调东线山东段通水前主要湖区水放射性水平[J]. 中国辐射卫生, 2006, 15(2):142-143Cao J L, Xu J A, Chen Y M, et al. The radioactivity levels in the main lakes of Shandong basin in east line of south to north water diversion[J]. Chinese Journal of Radiological Health, 2006, 15(2):142-143(in Chinese)
易玲, 高柏, 刘媛媛, 等. 铀矿区周边水体典型核素污染特征及风险评价[J]. 中国环境科学, 2019, 39(12):5342-5351Yi L, Gao B, Liu Y Y, et al. Distribution characteristics and risk assessment of typical radionuclides in water around uranium mining area[J]. China Environmental Science, 2019, 39(12):5342-5351(in Chinese)
Qin H H, Gao B, He L, et al. Hydrogeochemical characteristics and controlling factors of the Lhasa River under the influence of anthropogenic activities[J]. Water, 2019, 11(5):948
何柳. 拉萨河流域水文地球化学特征及其风化指示[D]. 抚州:东华理工大学, 2019:7-10 He L. Hydrogeochemical characteristics and weathering indicators in Lhasa River basin[D]. Fuzhou:East China Institute of Technology, 2019:7-10(in Chinese)
龚晨. 西藏拉萨河流域水化学时空变化及影响因素研究[D]. 天津:天津大学, 2015:11-15
齐文. 某铀尾矿区及下游河水水环境放射性污染特征研究[D]. 抚州:东华理工大学, 2016:33-43 Qi W. Pollution characteristics of a uranium tailings dam and downstream river environment radioactivity[D]. Fuzhou:East China Institute of Technology, 2016:33-43(in Chinese)
倪彬, 王洪波, 李旭东, 等. 湖泊饮用水源地水环境健康风险评价[J]. 环境科学研究, 2010, 23(1):74-79Ni B, Wang H B, Li X D, et al. Water environmental health risk assessment in lake sources of drinking water[J]. Research of Environmental Sciences, 2010, 23(1):74-79(in Chinese)
曾光明, 卓利, 钟政林, 等. 水环境健康风险评价模型[J]. 水科学进展, 1998, 9(3):212-217Zeng G M, Zhuo L, Zhong Z L, et al. Assessment models for water environmental health risk analysis[J]. Advances in Water Science, 1998, 9(3):212-217(in Chinese)
沈威, 高柏, 章艳红, 等. 临水河天然放射性核素调查及健康风险评价[J]. 科学技术与工程, 2019, 19(19):374-379Shen W, Gao B, Zhang Y H, et al. Investigation of radionuclides and health risk assessment in Linshui River[J]. Science Technology and Engineering, 2019, 19(19):374-379(in Chinese)
耿福明, 薛联青, 陆桂华, 等. 饮用水源水质健康危害的风险度评价[J]. 水利学报, 2006, 37(10):1242-1245Geng F M, Xue L Q, Lu G H, et al. Water quality health-hazard risk assessment on drinking water supply sources[J]. Journal of Hydraulic Engineering, 2006, 37(10):1242-1245(in Chinese)
Gharbi F, Baccouche S, Abdelli W, et al. Uranium isotopes in Tunisian bottled mineral waters[J]. Journal of Environmental Radioactivity, 2010, 101(8):589-590
Ajayi O S, Achuka J. Radioactivity in drilled and dug well drinking water of Ogun state Southwestern Nigeria and consequent dose estimates[J]. Radiation Protection Dosimetry, 2009, 135(1):54-63
梁晓军, 宋文磊, 李建, 等. 饮用水放射性污染现状及健康风险评价研究进展[J]. 职业与健康, 2015, 31(3):417-419Liang X J, Song W L, Li J, et al. Research progress on drinking water radioactivity pollution and its health risk assessment[J]. Occupation and Health, 2015, 31(3):417-419(in Chinese)
胡二邦. 环境风险评价实用技术和方法[M]. 北京:中国环境科学出版社, 2000:467-473
王志明, 王金生. 长江水的使用所致流域居民剂量的估算[J]. 中国环境科学, 2000, 20(S1):73-76Wang Z M, Wang J S. Estimation of dose to peoples due to using and being in contact with the water of Yangtze River[J]. China Environmental Science, 2000, 20(S1):73-76(in Chinese)
全国环境天然放射性水平调查总结报告编写小组. 全国水体中天然放射性核素浓度调查(1983-1990年)[J]. 辐射防护, 1992, 12(2):143-163The Writing Group of the Summary Report on Nationwide Survey of Environmental Radioactivity Level in China. Survey of natural radioactivity level of the waters in China (1983-1990)[J]. Radialization Protection, 1992, 12(2):143-163(in Chinese)
蒋经乾, 李玲, 占凌之, 等. 某尾矿库周边水放射性分布特征及其评价[J]. 有色金属(冶炼部分), 2015(11):60-63 Jiang J Q, Li L, Zhan L Z, et al. Radioactivity distribution characteristics and evaluation of water of tailings periphery[J]. Nonferrous Metals (Extractive Metallurgy), 2015(11):60-63(in Chinese)
李社红, 郑宝山, 朱建明, 等. 额尔齐斯河流域及某稀有多金属矿废水铀、钍含量分布及其环境影响[J]. 矿物学报, 2003, 23(4):308-312Li S H, Zheng B S, Zhu J M, et al. Distribution of uranium and thorium in the Irtysh River and upriver wastewater from a rare multi-metal mine[J]. Acta Mineralogica Sinica, 2003, 23(4):308-312(in Chinese)
王啸, 高亮, 段喜贵, 等. 天津市地下水和地热流体中天然放射性核素调查与评价[J]. 辐射防护, 2012, 32(4):248-253Wang X, Gao L, Duan X G, et al. Investigation and assessment of natural radionuclides in groundwater and geothermal fluid of Tianjin City[J]. Radiation Protection, 2012, 32(4):248-253(in Chinese)
韩冰, 何江涛, 陈鸿汉, 等. 地下水有机污染人体健康风险评价初探[J]. 地学前缘, 2006, 13(1):224-229Han B, He J T, Chen H H, et al. Primary study of health-based risk assessment of organic pollution in groundwater[J]. Earth Science Frontiers, 2006, 13(1):224-229(in Chinese)

相关话题/健康 污染 环境 环境科学 辐射