夏斌2,3,
朱琳2,3,
孙雪梅2,3,
赵信国2,3,
戴伟1,
陈碧鹃2,3,
曲克明2
1. 天津农学院水产学院, 天津 300384;
2. 农业部海洋渔业资源可持续发展重点实验室, 山东省渔业资源与生态环境重点实验室, 中国水产科学研究院黄海水产研究所, 青岛 266071;
3. 青岛海洋科学与技术试点国家实验室海洋生态与环境科学功能实验室, 青岛 266237
作者简介: 赵美静(1996-),女,硕士研究生,研究方向为海洋生态毒理学,E-mail:1599960230@qq.com.
基金项目: 中国水产科学研究院黄海水产研究所基本科研业务费资助项目(20603022019007,20603022020002);中国水产科学研究院基本科研业务费资助项目(2020TD12)中图分类号: X171.5
Research Progress on Interaction and Joint Toxicity of Microplastics with Toxic Pollutants
Zhao Meijing1,2,Xia Bin2,3,
Zhu Lin2,3,
Sun Xuemei2,3,
Zhao Xinguo2,3,
Dai Wei1,
Chen Bijuan2,3,
Qu Keming2
1. College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China;
2. Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Shandong Provincial Key Laboratory for Fishery Resources and Eco-Environment, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
3. Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:随着塑料产品的广泛应用,微塑料(microplastics,MPs)污染已经成为全球关注的重大环境问题。海洋中的MPs能够与有毒污染物(如有机污染物、重金属和纳米颗粒等)发生相互作用,对海洋生物产生复合效应。因此,MPs与环境中有毒污染物的联合毒性效应越来越引起人们的关注。本文首先概括总结出MPs对海洋生物的毒性效应及致毒机制,包括遮蔽效应、氧化应激、免疫毒性、生殖毒性、遗传毒性、神经毒性和行为毒性等方面;随后分别讨论了MPs和有机污染物、重金属以及人工纳米颗粒的联合毒性效应,从微塑料对污染物的吸附、富集和载体效应着手分析微塑料与污染物之间的相互作用,凝练得出MPs增强或抑制污染物毒性的作用机制,包括微塑料改变污染物的生物可利用性、微塑料改变生物体对污染物的胁迫响应、微塑料与污染物发生交互作用等;最后对微塑料与有毒污染物联合毒作用研究的发展方向进行了展望,建议在未来研究中重点关注环境特征的次生微塑料与有毒污染物相互作用的环境行为和生物效应,特别是通过食物链的传递作用。以期为准确评估和深入理解微塑料的海洋环境和人类健康风险提供理论依据。
关键词: 微塑料/
有机污染物/
重金属/
纳米颗粒/
联合毒性
Abstract:With the widespread use of plastic products, microplastic pollution has become a major environmental issue of global concern. Microplastics (MPS) in the ocean can interact with toxic pollutants (such as organic pollutants, heavy metals and nanoparticles) and they have combined effects on marine organisms. Therefore, the combined toxic effects of MP S and toxic pollutants in the environment have attracted more and more attention. This review generally summarized the toxic effects and mechanisms of MPS on marine organisms, including shading effects, oxidative stress, immunotoxicity, reproductive toxicity, genetic toxicity, neurotoxicity and behavioral toxicity. Then, this review deeply discussed the combined toxicity of MPS and organic pollutants, heavy metals and nanoparticles, respectively. Based on the adsorption, enrichment and carrier effect of microplastics on pollutants, the interaction between MPs and pollutants were analyzed. It concludes that microplastics can enhance or inhibit the toxicity of pollutants mainly through changing the bioavailability of pollutants, altering the stress response of organisms to pollutants, and interacting with the pollutants. Finally, the combined toxicity action mechanism of microplastics and toxic pollutants were investigated in future study. The future research should focus on the environmental behavior and biological effects between environmentally relevant microplastics and toxic pollutants, especially their trophic transfer through the food chain. This overview aims to provide the theoretical basis for the accurate assessment and in-depth understanding of the risks of microplastics in marine environment and human health.
Key words:microplastics/
organic pollutants/
heavy metals/
nanoparticles/
combined toxicity.
Plastics Europe. Plastics-The facts. An analysis of European plastics production, demand and waste data[R]. Brussels:Plastics Europe, 2020 |
Jambeck J R, Geyer R, Wilcox C, et al. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223):768-771 |
da Costa J P, Santos P S M, Duarte A C, et al.(Nano) plastics in the environment-Sources, fates and effects[J]. Science of the Total Environment, 2016, 566-567:15-26 |
Arthur C, Baker J, Bamford H. Workshop on the occurrence, effects, and fate of microplastic marine debris[J]. Group, 2009, 1:530 |
Magara G, Elia A C, Syberg K, et al. Single contaminant and combined exposures of polyethylene microplastics and fluoranthene:Accumulation and oxidative stress response in the blue mussel,Mytilus edulis[J]. Journal of Toxicology and Environmental Health, Part A, 2018, 81(16):761-773 |
Xu S, Ma J, Ji R, et al. Microplastics in aquatic environments:Occurrence, accumulation, and biological effects[J]. Science of Total Environment, 2020, 703:134699 |
Long M, Moriceau B, Gallinari M, et al. Interactions between microplastics and phytoplankton aggregates:Impact on their respective fates[J]. Marine Chemistry, 2015, 175:39-46 |
Lyakurwa D J. Uptake and effects of microplastic particles in selected marine microalgae species; Oxyrrhis marina and Rhodomonas baltica[D]. Trondheim:Norwegian University of Science and Technology, 2017:1-38 |
Zhang C, Chen X H, Wang J T, et al. Toxic effects of microplastic on marine microalgae Skeletonema costatum:Interactions between microplastic and algae[J]. Environmental Pollution, 2017, 220:1282-1288 |
Nguyen M K, Moon J Y, Lee Y C. Microalgal ecotoxicity of nanoparticles:An updated review[J]. Ecotoxicology and Environmental Safety, 2020, 201:110781 |
Cole M, Lindeque P, Fileman E, et al. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus[J]. Environmental Science&Technology, 2015, 49(2):1130-1137 |
Green D S, Boots B, Sigwart J, et al. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling[J]. Environmental Pollution, 2016, 208:426-434 |
Tallec K, Huvet A, Di Poi C, et al. Nanoplastics impaired oyster free living stages, gametes and embryos[J]. Environmental Pollution, 2018, 242:1226-1235 |
Pedà C, Caccamo L, Fossi M C, et al. Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics:Preliminary results[J]. Environmental Pollution, 2016, 212:251-256 |
Yin L Y, Chen B J, Xia B, et al. Polystyrene microplastics alter the behavior, energy reserve and nutritional composition of marine jacopever (Sebastes schlegelii)[J]. Journal of Hazardous Materials, 2018, 360:97-105 |
Barboza L G A, Vieira L R, Branco V, et al. Microplastics increase mercury bioconcentration in gills and bioaccumulation in the liver, and cause oxidative stress and damage in Dicentrarchus labrax juveniles[J]. Scientific Reports, 2018, 8(1):15655 |
Sendra M, Staffieri E, Yeste M P, et al. Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom Phaeodactylum tricornutum?[J]. Environmental Pollution, 2019, 249:610-619 |
Hazeem L J, Yesilay G, Bououdina M, et al. Investigation of the toxic effects of different polystyrene micro-and nanoplastics on microalgae Chlorella vulgaris by analysis of cell viability, pigment content, oxidative stress and ultrastructural changes[J]. Marine Pollution Bulletin, 2020, 156:111278 |
Détrée C, Gallardo-Escárate C. Single and repetitive microplastics exposures induce immune system modulation and homeostasis alteration in the edible musselMytilus galloprovincialis[J]. Fish&Shellfish Immunology, 2018, 83:52-60 |
Tang Y, Rong J H, Guan X F, et al. Immunotoxicity of microplastics and two persistent organic pollutants alone or in combination to a bivalve species[J]. Environmental Pollution, 2020, 258:113845 |
Lee K W, Shim W J, Kwon O Y, et al. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicas[J]. Environmental Science& Technology, 2013, 47(19):11278-11283 |
Tlili S, Jemai D, Brinis S, et al. Microplastics mixture exposure at environmentally relevant conditions induce oxidative stress and neurotoxicity in the wedge clam Donax trunculus[J]. Chemosphere, 2020, 258:127344 |
Tang Y, Zhou W S, Sun S G, et al. Immunotoxicity and neurotoxicity of bisphenol A and microplastics alone or in combination to a bivalve species, Tegillarca granosa[J]. Environmental Pollution, 2020, 265:115115 |
Bakir A, Rowland S J, Thompson R C. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions[J]. Environmental Pollution, 2014, 185:16-23 |
屈沙沙,朱会卷,刘锋平,等.微塑料吸附行为及对生物影响的研究进展[J].环境卫生学杂志, 2017, 7(1):75-78Qu S S, Zhu H J, Liu F P, et al. Adsorption behavior and effect on biont of microplastic[J]. Journal ofEnvironmental Hygiene, 2017, 7(1):75-78(in Chinese) |
Llorca M, Schirinzi G, Martínez M, et al. Adsorption of perfluoroalkyl substances on microplastics under environmental conditions[J]. Environmental Pollution, 2018, 235:680-691 |
Fang S, Yu W S, Li C L, et al. Adsorption behavior of three triazole fungicides on polystyrene microplastics[J]. Science of Total Environment, 2019, 691:1119-1126 |
Ateia M, Zheng T, Calace S, et al. Sorption behavior of real microplastics (MPs):Insights for organic micropollutants adsorption on a large set of well-characterized MPs[J]. Science of Total Environment, 2020, 720:137634 |
Bakir A, O'Connor I A, Rowland S J, et al. Relative importance of microplastics as a pathway for the transfer of hydrophobic organic chemicals to marine life[J]. Environmental Pollution, 2016, 219:56-65 |
Ogata Y, Takada H, Mizukawa K, et al. International Pellet Watch:Global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs[J]. Marine Pollution Bulletin, 2009, 58(10):1437-1446 |
Fisner M, Taniguchi S, Moreira F, et al. Polycyclic aromatic hydrocarbons (PAHs) in plastic pellets:Variability in the concentration and composition at different sediment depths in a sandy beach[J]. Marine Pollution Bulletin, 2013, 70(1-2):219-226 |
Hirai H, Takada H, Ogata Y, et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches[J]. Marine Pollution Bulletin, 2011, 62(8):1683-1692 |
Mato Y, Isobe T, Takada H, et al. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment[J]. Environmental Science&Technology, 2001, 35(2):318-324 |
Zhang J H, Chen H B, He H, et al. Adsorption behavior and mechanism of 9-nitroanthracene on typical microplastics in aqueous solutions[J]. Chemosphere, 2020, 245:125628 |
Gao F L, Li J X, Sun C J, et al. Study on the capability and characteristics of heavy metals enriched on microplastics in marine environment[J]. Marine Pollution Bulletin, 2019, 144:61-67 |
Xia B, Zhang J, Zhao X G, et al. Polystyrene microplastics increase uptake, elimination and cytotoxicity of decabromodiphenyl ether (BDE-209) in the marine scallop Chlamys farreri[J]. Environmental Pollution, 2020, 258:113657 |
Koelmans A A, Besseling E, Wegner A, et al. Plastic as a carrier of POPs to aquatic organisms:A model analysis[J]. Environmental Science&Technology, 2013, 47(14):7812-7820 |
Beckingham B, Ghosh U. Differential bioavailability of polychlorinated biphenyls associated with environmental particles:Microplastic in comparison to wood, coal and biochar[J]. Environmental Pollution, 2017, 220:150-158 |
Rochman C M, Hoh E, Kurobe T, et al. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress[J]. Scientific Reports, 2013, 3:3263 |
Yang H L, Lai H, Huang J, et al. Polystyrene microplastics decrease F-53B bioaccumulation but induce inflammatory stress in larval zebrafish[J]. Chemosphere, 2020, 255:127040 |
Rainieri S, Conlledo N, Larsen B K, et al. Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio)[J]. Environmental Research, 2018, 162:135-143 |
Avio C G, Gorbi S, Regoli F. Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues:First observations in commercial species from Adriatic Sea[J]. Marine Environmental Research, 2015, 111:18-26 |
Islam N, Garcia da Fonseca T, Vilke J, et al. Perfluorooctane sulfonic acid (PFOS) adsorbed to polyethylene microplastics:Accumulation and ecotoxicological effects in the clam Scrobicularia plana[J]. Marine Environmental Research, 2021, 164:105249 |
Paul-Pont I, Lacroix C, González Fernández C, et al. Exposure of marine mussels Mytilus spp. to polystyrene microplastics:Toxicity and influence on fluoranthene bioaccumulation[J]. Environmental Pollution, 2016, 216:724-737 |
Karami A, Romano N, Galloway T, et al. Virgin microplastics cause toxicity and modulate the impacts of phenanthrene on biomarker responses in African catfish (Clarias gariepinus)[J]. Environmental Research, 2016, 151:58-70 |
Zhou W S, Han Y, Tang Y, et al. Microplastics aggravate the bioaccumulation of two waterborne veterinary antibiotics in an edible bivalve species:Potential mechanisms and implications for human health[J]. Environmental Science&Technology, 2020, 54(13):8115-8122 |
Han Y, Zhou W S, Tang Y, et al. Microplastics aggravate the bioaccumulation of three veterinary antibiotics in the thick shell mussel Mytilus coruscus and induce synergistic immunotoxic effects[J]. Science of Total Environment, 2021, 770:145273 |
Wang F, Gao J, Zhai W J, et al. The influence of polyethylene microplastics on pesticide residue and degradation in the aquatic environment[J]. Journal of Hazardous Materials, 2020, 394:122517 |
Chua E M, Shimeta J, Nugegoda D, et al. Assimilation of polybrominated diphenyl ethers from microplastics by the marine amphipod, Allorchestes compressa[J]. Environmental Science&Technology, 2014, 48(14):8127-8134 |
Sleight V A, Bakir A, Thompson R C, et al. Assessment of microplastic-sorbed contaminant bioavailability through analysis of biomarker gene expression in larval zebrafish[J]. Marine Pollution Bulletin, 2017, 116(1-2):291-297 |
Zhang Q, Qu Q, Lu T, et al. The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth[J]. Environmental Pollution, 2018, 243:1106-1112 |
Trevisan R, Voy C, Chen S X, et al. Nanoplastics decrease the toxicity of a complex PAH mixture but impair mitochondrial energy production in developing zebrafish[J]. Environmental Science&Technology, 2019, 53(14):8405-8415 |
Zhang S S, Ding J N, Razanajatovo R M, et al. Interactive effects of polystyrene microplastics and roxithromycin on bioaccumulation and biochemical status in the freshwater fish red tilapia (Oreochromis niloticus)[J]. Science of Total Environment, 2019, 648:1431-1439 |
Kedzierski M, D'Almeida M, Magueresse A, et al. Threat of plastic ageing in marine environment. Adsorption/desorption of micropollutants[J]. Marine Pollution Bulletin, 2018, 127:684-694 |
Brennecke D, Duarte B, Paiva F, et al. Microplastics as vector for heavy metal contamination from the marine environment[J]. Estuarine, Coastal and Shelf Science, 2016, 178:189-195 |
Tang S, Lin L J, Wang X S, et al. Pb (II) uptake onto nylon microplastics:Interaction mechanism and adsorption performance[J]. Journal of Hazardous Materials, 2020, 386:121960 |
Ashton K, Holmes L, Turner A. Association of metals with plastic production pellets in the marine environment[J]. Marine Pollution Bulletin, 2010, 60(11):2050-2055 |
Holmes L A, Turner A, Thompson R C. Adsorption of trace metals to plastic resin pellets in the marine environment[J]. Environmental Pollution, 2012, 160:42-48 |
Artham T, Sudhakar M, Venkatesan R, et al. Biofouling and stability of synthetic polymers in sea water[J]. International Biodeterioration&Biodegradation, 2009, 63(7):884-890 |
Wang J D, Peng J P, Tan Z, et al. Microplastics in the surface sediments from the Beijiang River littoral zone:Composition, abundance, surface textures and interaction with heavy metals[J]. Chemosphere, 2017, 171:248-258 |
Johansen M P, Prentice E, Cresswell T, et al. Initial data on adsorption of Cs and Sr to the surfaces of microplastics with biofilm[J]. Journal of Environmental Radioactivity, 2018, 190-191:130-133 |
Wang Z S, Dong H, Wang Y, et al. Effects of microplastics and their adsorption of cadmium as vectors on the cladoceran Moina monogolica Daday:Implications for plastic-ingesting organisms[J]. Journal of Hazardous Materials, 2020, 400:123239 |
Sun J H, Xia S D, Ning Y, et al. Effects of microplastics and attached heavy metals on growth, immunity, and heavy metal accumulation in the Yellow Seahorse, Hippocampus kuda Bleeker[J]. Marine Pollution Bulletin, 2019, 149:110510 |
Lu K, Qiao R X, An H, et al. Influence of microplastics on the accumulation and chronic toxic effectsof cadmium in zebrafish (Danio rerio)[J]. Chemosphere, 2018, 202:514-520 |
Lu Y F, Zhang Y, Deng Y F, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science &Technology, 2016, 50(7):4054-4060 |
Banaee M, Soltanian S, Sureda A, et al. Evaluation of single and combined effects of cadmium and micro-plastic particles on biochemical and immunological parameters of common carp (Cyprinus carpio)[J]. Chemosphere, 2019, 236:124335 |
Wen B, Jin S R, Chen Z Z, et al. Single and combined effects of microplastics and cadmium on the cadmium accumulation, antioxidant defence and innate immunity of thediscus fish (Symphysodon aequifasciatus)[J]. Environmental Pollution, 2018, 243:462-471 |
Khan F R, Syberg K, Shashoua Y, et al. Influence of polyethylene microplastic beads on the uptake and localization of silver in zebrafish (Danio rerio)[J]. Environmental Pollution, 2015, 206:73-79 |
Li P H, Zou X Y, Wang X D, et al. A preliminary study of the interactions between microplastics and citrate-coated silver nanoparticles in aquatic environments[J]. Journal of Hazardous Materials, 2020, 385:121601 |
Wu S M, Zhang S H, Gong Y, et al. Identification and quantification of titanium nanoparticles in surface water:A case study in Lake Taihu, China[J]. Journal of Hazardous Materials, 2020, 382:121045 |
Xu L N, Wang Z Y, Zhao J, et al. Accumulation of metalbased nanoparticles in marine bivalve mollusks from offshore aquaculture as detected by single particle ICP-MS[J]. Environmental Pollution, 2020, 260:114043 |
Thiagarajan V, Iswarya V, Abraham J P, et al. Influence of differently functionalized polystyrene microplastics on the toxic effects of P25 TiO2 NPs towards marine algae Chlorella sp.[J]. Aquatic Toxicology, 2019, 207:208-216 |
Davarpanah E, Guilhermino L. Are gold nanoparticles and microplastics mixtures more toxic to the marine microalgae Tetraselmis chuii than the substances individually?[J]. Ecotoxicology and Environmental Safety, 2019, 181:60-68 |
Huang B, Wei Z B, Yang L Y, et al. Combined toxicity of silver nanoparticles with hematite or plastic nanoparticles toward two freshwater algae[J]. Environmental Science& Technology, 2019, 53(7):3871-3879 |
Pacheco A, Martins A, Guilhermino L. Toxicological interactions induced by chronic exposure to gold nanoparticles and microplastics mixtures in Daphnia magna[J]. Science of Total Environment, 2018, 628-629:474-483 |
Zhu X L, Zhao W H, Chen X H, et al. Growth inhibition of the microalgae Skeletonema costatum under copper nanoparticles with microplastic exposure[J]. Marine Environmental Research, 2020, 158:105005 |