高静2,
魏思敏1,
关思静2,
葛甜甜2,
王楠1,
唐志书1,
宋忠兴1
1. 陕西中医药大学陕西中药资源产业化省部共建协同创新中心, 咸阳 712083;
2. 陕西中医药大学药学院, 咸阳 712046
作者简介: 徐蓉蓉(1995-),女,硕士,研究方向为药用植物生理生态学,E-mail:xu09nsn@163.com.
基金项目: 现代农业产业技术体系建设专项资金(CARS-21);2018年中医药公共卫生服务补助专项“全国中药资源普查项目”(财社〔2018〕43号);陕西中医药大学校级科研课题(2020GP01)中图分类号: X171.5
Phytotoxicity of AgNPs on Astragalus mongholicus Seeds and Seedlings and Data Mining Analysis
Xu Rongrong1,2,Gao Jing2,
Wei Simin1,
Guan Sijing2,
Ge Tiantian2,
Wang Nan1,
Tang Zhishu1,
Song Zhongxing1
1. Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China;
2. College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:探讨纳米银(AgNPs)对蒙古黄芪种子萌发和幼苗生长的影响,并基于文献数据讨论AgNPs对单一物种的影响是否与数据挖掘趋势相符合。蒙古黄芪种子置于9个不同浓度的AgNPs溶液中,每日观察并记录种子萌发情况。观察结束后进行萌发和生长指标测定,并基于实验结果和文献数据进行比较分析。结果表明,随着AgNPs浓度升高,蒙古黄芪最终发芽率受到抑制,高浓度时显著降低(P<0.05);浓度为600 mg·L-1和1 000 mg·L-1时平均发芽时间显著高于其他处理组(P<0.05);浓度升高到400~1 000 mg·L-1时,胚根长、子叶长和子叶宽受到抑制,显著低于对照组(P<0.05);胚轴的长度未受到AgNPs浓度变化的影响;叶绿素和氮含量在AgNPs浓度为200 mg·L-1时开始显著降低(P<0.05);与对照组相比,各浓度处理组(除20 mg·L-1外)的鲜质量与干质量均显著减少(P<0.05);幼苗地上部分和地下部分抗氧化酶过氧化氢酶(CAT)、过氧化物酶(POD)和超氧化物歧化酶(SOD)活性变化趋势基本一致。通过计算抑制率表明,600 mg·L-1和1 000 mg·L-1的AgNPs对蒙古黄芪具有毒害作用。总的来说,实验结果部分符合数据挖掘模型趋势。比较几种分析模型发现,隶属函数法分析和主成分分析结果一致,meta分析比冗余分析更适用于单一物种趋势的预测。AgNPs抑制蒙古黄芪种子萌发,低浓度AgNPs对幼苗影响不明显,高浓度严重抑制幼苗生长。
关键词: AgNPs/
蒙古黄芪/
种子萌发/
幼苗生理特征/
生长抑制/
数据挖掘
Abstract:To explore the influence of silver nanoparticles (AgNPs) on seed germination and seedling growth of A. mongholicus, and to discuss whether the impact of AgNPs on a single species is consistent with the trend of data mining. A. mongholicus seeds were cultured at nine different concentration levels of AgNPs solution. Seed germination was observed and recorded every day, and the parameters of germination and growth were measured after the observation. Based on the experimental results and literature data, the comparative analysis was performed. As the concentration of AgNPs increased, the total germination percentage of A. mongholicus was inhibited, and it decreased significantly at high concentration (P<0.05). The mean of germination time at concentrations of 600 mg·L-1 and 1 000 mg·L-1 was significantly higher than other treatments (P<0.05). When the concentration increased to 400 ~ 1 000 mg·L-1, the radicle length, cotyledon length and cotyledon width were significantly inhibited, which were significantly lower than that of the control group (P<0.05). The hypocotyl length wasn’t influenced by the change of AgNPs concentration. The contents of chlorophyll and nitrogen began to decrease significantly when the AgNPs concentration was at 200 mg·L-1(P<0.05). Compared with the control group, the fresh weight and dry weight of each treatment group (except 20 mg·L-1) were significantly reduced (P<0.05). The antioxidant enzymes activity trends of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) of aboveground and underground portions of seedlings were basically the same. Calculation of the inhibition rate showed that AgNPs of 600 mg·L-1 and 1 000 mg·L-1 had toxic effects on A. mongholicus. In general, the experimental results were partially consistent with the trend of data mining models. Comparing several analysis models, it was found that the results of membership function analysis and principal component analysis were consistent, and meta analysis was more suitable for single species trend prediction than redundancy analysis. AgNPs inhibited the germination of A. mongholicus seeds, low concentration AgNPs had little effect on seedlings, and high concentration seriously inhibited seedling growth.
Key words:AgNPs/
A. mongholicus/
seed germination/
seedling physiological characteristics/
growth inhibition/
data mining.
彭程. 氧化铜纳米颗粒在土壤-水稻系统中的形态转化机制研究[D]. 杭州:浙江大学, 2016:1-6 Peng C. Transformation of copper oxide nanoparticles in the system of paddy soil and rice (Oryza sativa L.)[D]. Hangzhou:Zhejiang University, 2016:1-6(in Chinese) |
Geisler-Lee J, Wang Q, Yao Y, et al. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana[J]. Nanotoxicology, 2012, 7(3):323-337 |
Jos'ko I, Oleszczuk P. Influence of soil type and environmental conditions on ZnO, TiO2 and Ni nanoparticles phytotoxicity[J]. Chemosphere, 2013, 92(1):91-99 |
Lowry G V, Espinasse B P, Badireddy A R, et al. Longterm transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland[J]. Environmental Science & Technology, 2012, 46(13):7027-7036 |
Levard C, Reinsch B C, Michel F M, et al. Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution:Impact on dissolution rate[J]. Environmental Science & Technology, 2011, 45(12):5260-5266 |
Song U, Jun H, Waldman B, et al. Functional analyses of nanoparticle toxicity:A comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum) [J]. Ecotoxicology and Environmental Safety, 2013, 93:60-67 |
Zuverza-Mena N, Armendariz R, Peralta-Videa J R, et al. Effects of silver nanoparticles on radish sprouts:Root growth reduction and modifications in the nutritional value[J]. Frontiers in Plant Science, 2016, 7:90 |
Wang L F, Zhu J Z, Wu Q Y, et al. Effects of silver nanoparticles on seed germination and seedling growth of radish (Raphanus sativus L.)[C]. Proceedings of the 2nd International Conference on Civil, Materials and Environmental Sciences, Paris:Atlantis Press, 2015 |
Vannini C, Domingo G, Onelli E, et al. Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings[J]. Journal of Plant Physiology, 2014, 171(13):1142-1148 |
Hojjat S S, Kamyab M. The effect of silver nanoparticle on Fenugreek seed germination under salinity levels[J]. Russian Agricultural Sciences, 2017, 43(1):61-65 |
Asanova A A, Yashin S E, Trofimova T V, et al. Application of silver nanoparticles to improve wheat seedlings growth[J]. Conference Series:Earth and Environmental Science, 2019, 315:052041 |
秦雪梅, 李震宇, 孙海峰, 等. 我国黄芪药材资源现状与分析[J]. 中国中药杂志, 2013, 38(19):3234-3238Qin X M, Li Z Y, Sun H F, et al. Status and analysis of Astragali Radix resource in China[J]. China Journal of Chinese Materia Medica, 2013, 38(19):3234-3238(in Chinese) |
赵鑫, 王文娟, 王普昶, 等. 不同钙浓度对宽叶雀稗幼苗的生长和抗性生理的影响[J]. 植物生态学报, 2019, 43(10):909-920Zhao X, Wang W J, Wang P C, et al. Effects of different calcium concentrations on growth and physiology of Paspalum wettsteinii seedlings[J]. Chinese Journal of Plant Ecology, 2019, 43(10):909-920(in Chinese) |
Shaw A K, Hossain Z. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings[J]. Chemosphere, 2013, 93(6):906-915 |
Saeideh N, Rashid J. Effect of silver nanoparticles and Pb(NO3)2 on the yield and chemical composition of Mung bean (Vigna radiata)[J]. Journal of Stress Physiology & Biochemistry, 2014, 10(1):316-325 |
Thuesombat P, Hannongbua S, Akasit S, et al. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth[J]. Ecotoxicology and Environmental Safety, 2014, 104:302-309 |
Almutairi Z, Alharbi A. Effect of silver nanoparticles on seed germination of crop plants[J]. Journal of Advances in Agriculture, 2015, 4(1):280-285 |
Yasur J, Rani P U. Environmental effects of nanosilver:Impact on castor seed germination, seedling growth, and plant physiology[J]. Environmental Science and Pollution Research, 2013, 20(12):8636-8648 |
Karami Mehrian S, Heidari R, Rahmani F, et al. Effect of chemical synthesis silver nanoparticles on germination indices and seedlings growth in seven varieties of Lycopersicon esculentum mill (tomato) plants[J]. Journal of Cluster Science, 2016, 27(1):327-340 |
Nair P M G, Chung I M. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings[J]. Chemosphere, 2014, 112:105-113 |
Parveen A, Rao S. Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum[J]. Journal of Cluster Science, 2015, 26(3):693-701 |
Anjum N A, Gill S S, Duarte A C, et al. Silver nanoparticles in soil-plant systems[J]. Journal of Nanoparticle Research, 2013, 15(9):1-26 |
陈斌. 纳米银对拟南芥生理生化特性的影响[D]. 海口:海南大学, 2017:1-3 Chen B. The impact of silver nanoparticles on Arabidopsis thaliana and its physiological and biochemical characteristics[D]. Haikou:Hainan University, 2017:1-3(in Chinese) |
Gusev A А, Kudrinsky A A, Zakharova O V, et al. Versatile synthesis of PHMB-stabilized silver nanoparticles and their significant stimulating effect on fodder beet (Beta vulgaris L.)[J]. Materials Science and Engineering:C, 2016, 62:152-159 |
彭小凤. 纳米银对拟南芥营养生长与开花的影响[D]. 杭州:浙江工业大学, 2013:5-6, 22 Peng X F. The effects of silver nanoparticles on the vegetative growth and flowing of Arabidopsis thaliana[D]. Hangzhou:Zhejiang University of Technology, 2013:5-6, 22(in Chinese) |
施夏明, 高超, 乔宁宁, 等. 纳米金对绿豆(Phaseolus radiatus)种子萌发和幼苗生长的影响及其生理机制[J]. 生态学杂志, 2019, 38(4):945-952Shi X M, Gao C, Qiao N N, et al. Effects of gold nanoparticles on seed germination and seedling growth of mung bean (Phaseolus radiatus) and the underlying physiological mechanism[J]. Chinese Journal of Ecology, 2019, 38(4):945-952(in Chinese) |
Cvjetko P, Zovko M, Štefanic P P, et al. Phytotoxic effects of silver nanoparticles in tobacco plants[J]. Environmental Science and Pollution Research, 2018, 25(6):5590-5602 |
孙举志, 向极钎, 殷红清, 等. 纳米银与植物的相互作用:吸收、迁移、累积、转化、生物效应及潜在机制[J]. 植物生理学报, 2019, 55(11):1570-1578Sun J Z, Xiang J Q, Yin H Q, et al. Interactions between silver nanoparticle and plants:Uptake, translocation, accumulation, transformation, bioeffect and underlying mechanism[J]. Plant Physiology Journal, 2019, 55(11):1570-1578(in Chinese) |
Baskar V, Venkatesh J, Park S W. Impact of biologically synthesized silver nanoparticles on the growth and physiological responses in Brassica rapa ssp. Pekinensis[J]. Environmental Science and Pollution Research, 2015, 22(22):17672-17682 |
Al-Huqail A A, Hatata M M, Al-Huqail A A, et al. Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings[J]. Saudi Journal of Biological Sciences, 2018, 25(2):313-319 |